Home
Class 14
MATHS
sqrt((2704)/(81))=?...

`sqrt((2704)/(81))=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \(\sqrt{\frac{2704}{81}}\), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the square root of the fraction: \[ \sqrt{\frac{2704}{81}} = \frac{\sqrt{2704}}{\sqrt{81}} \] ### Step 2: Calculate \(\sqrt{81}\) Next, we calculate the square root of the denominator: \[ \sqrt{81} = 9 \] ### Step 3: Calculate \(\sqrt{2704}\) Now we need to find the square root of the numerator. We can check if 2704 is a perfect square. To find \(\sqrt{2704}\), we can use prime factorization or check for perfect squares. After checking, we find: \[ \sqrt{2704} = 52 \] ### Step 4: Combine the results Now we can substitute our results back into the expression: \[ \frac{\sqrt{2704}}{\sqrt{81}} = \frac{52}{9} \] ### Step 5: Final answer Thus, the final answer is: \[ \sqrt{\frac{2704}{81}} = \frac{52}{9} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

sqrt((324)/(81))+sqrt((324)/(81))=?

(sqrt((225)/(729))-sqrt((25)/(144)))+sqrt((16)/(81))=?(1)/(48)(b)(5)/(48)(c)(5)/(16) (d) None of these

(a) Find the value of sqrt(324)/sqrt(1225) (b) Find the value of sqrt(4(37)/(81)) (c ) Find the value of sqrt(0.0256) (d) Find the value of sqrt(52.2729)

Evaluate: sqrt ((16)/(81))

sqrt((25)/(81)-(1)/(9))=?(2)/(3)( b) (4)/(9)( c) (16)/(81) (d) (25)/(81)

sqrt((324)/(49))xx sqrt((676)/(169))xx(126)/(sqrt(81))=x

(5863-sqrt(2704))xx0.5=?