Home
Class 14
MATHS
sqrt((9261)/(8400))=?...

`sqrt((9261)/(8400))=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( \sqrt{\frac{9261}{8400}} \), we will simplify the expression step by step. ### Step 1: Write the expression We start with the expression: \[ \sqrt{\frac{9261}{8400}} \] ### Step 2: Factor the numbers Next, we need to factor both the numerator and the denominator. We know that: - \( 9261 = 21^3 \) (since \( 21 \times 21 \times 21 = 9261 \)) - \( 8400 = 100 \times 84 = 100 \times (4 \times 21) = 100 \times 4 \times 21 = 400 \times 21 \) Thus, we can rewrite the expression as: \[ \sqrt{\frac{21^3}{400 \times 21}} \] ### Step 3: Simplify the fraction Now, we can simplify the fraction: \[ \frac{21^3}{400 \times 21} = \frac{21^2}{400} = \frac{441}{400} \] ### Step 4: Rewrite the square root Now we can rewrite the square root: \[ \sqrt{\frac{441}{400}} = \frac{\sqrt{441}}{\sqrt{400}} \] ### Step 5: Calculate the square roots Next, we calculate the square roots: - \( \sqrt{441} = 21 \) (since \( 21 \times 21 = 441 \)) - \( \sqrt{400} = 20 \) (since \( 20 \times 20 = 400 \)) Thus, we have: \[ \frac{\sqrt{441}}{\sqrt{400}} = \frac{21}{20} \] ### Step 6: Final result The final result is: \[ \frac{21}{20} = 1.05 \] Therefore, the answer to \( \sqrt{\frac{9261}{8400}} \) is \( 1.05 \). ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

Find the cube root of each of the following numbers :(1331)/(4096) (ii) (-2197)/(9261) (iii) (4096)/(-2197) (iv) (-3375)/(-2744)

Find x : ( sqrt(x) + sqrt(a) ) / ( sqrt(x) - sqrt(a) ) + ( sqrt(x) - sqrt(a) ) / ( sqrt(x) + sqrt(a) ) = 6

(sqrt(sqrt(3)+sqrt(2)) + sqrt(sqrt(3)-sqrt(2)))/sqrt(sqrt(3)+1)

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))