Home
Class 14
MATHS
If sqrt(2)=1.414, then find the value of...

If `sqrt(2)=1.414`, then find the value of `(1)/(sqrt(9)-sqrt(8))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{\sqrt{9} - \sqrt{8}} \) given that \( \sqrt{2} = 1.414 \), we will follow these steps: ### Step 1: Simplify the square roots First, we simplify \( \sqrt{9} \) and \( \sqrt{8} \): - \( \sqrt{9} = 3 \) - \( \sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} \) So, we can rewrite the expression as: \[ \frac{1}{3 - 2\sqrt{2}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \( 3 + 2\sqrt{2} \): \[ \frac{1 \cdot (3 + 2\sqrt{2})}{(3 - 2\sqrt{2})(3 + 2\sqrt{2})} \] ### Step 3: Expand the denominator Using the difference of squares formula \( (a - b)(a + b) = a^2 - b^2 \): - Here, \( a = 3 \) and \( b = 2\sqrt{2} \): \[ (3 - 2\sqrt{2})(3 + 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 4 \cdot 2 = 9 - 8 = 1 \] ### Step 4: Simplify the expression Now, substituting back, we have: \[ \frac{3 + 2\sqrt{2}}{1} = 3 + 2\sqrt{2} \] ### Step 5: Substitute the value of \( \sqrt{2} \) Now we substitute \( \sqrt{2} = 1.414 \): \[ 3 + 2 \cdot 1.414 = 3 + 2.828 = 5.828 \] ### Final Answer Thus, the value of \( \frac{1}{\sqrt{9} - \sqrt{8}} \) is: \[ \boxed{5.828} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

Find the value of 1/(sqrt(9) - sqrt(4)) .

if sqrt(2)=1.414, find the value of (1)/(sqrt(2)+1)

Find the value of 1/(sqrt9 - sqrt4)

If sqrt(2) = 1.414 then find the value of sqrt(8) + sqrt(50) + sqrt(72) + sqrt(98)

Given sqrt(2)=1.414,sqrt(3)=1.732,sqrt(5)=2.236,sqrt(6)=2.440 and sqrt(10)=3.162 Then find the value of (sqrt(2)-1)/(sqrt(3)-sqrt(5)) upto three decimal places

Given,sqrt(2)=1.414 and sqrt(6)=2.449, find the value of (1)/(sqrt(3)-sqrt(2)-1) correct to 3 places of decimal.