Home
Class 14
MATHS
sqrt(1089)+sqrt(289)=sqrt(?)...

`sqrt(1089)`+`sqrt(289)`=`sqrt(?)`

A

625

B

50

C

2500

D

1378

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{1089} + \sqrt{289} = \sqrt{?} \), we will follow these steps: ### Step 1: Calculate \( \sqrt{1089} \) First, we need to find the square root of 1089. To do this, we can factor 1089: - 1089 = 33 × 33 - Therefore, \( \sqrt{1089} = 33 \). ### Step 2: Calculate \( \sqrt{289} \) Next, we calculate the square root of 289. To factor 289: - 289 = 17 × 17 - Therefore, \( \sqrt{289} = 17 \). ### Step 3: Add the results Now we can add the two square roots we calculated: \[ \sqrt{1089} + \sqrt{289} = 33 + 17 = 50. \] ### Step 4: Set up the equation We now have: \[ 50 = \sqrt{?}. \] ### Step 5: Square both sides To find the value of the question mark, we square both sides: \[ 50^2 = ?. \] Calculating \( 50^2 \): \[ 50^2 = 2500. \] ### Conclusion Thus, we find that: \[ \sqrt{1089} + \sqrt{289} = \sqrt{2500}. \] The final answer is: \[ ? = 2500. \] ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

sqrt(1089)+3=(?)^(2)

Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

Which of the following surd is the smallest ? sqrt(10)-sqrt(5),sqrt(19)-sqrt(14),sqrt(22)-sqrt(17) and sqrt(8)-sqrt(3)

Evaluate : ( sqrt(3) + sqrt(2)) / ( sqrt(3) - sqrt(2) + ( sqrt(3) - sqrt(2)) / ( sqrt(3) + sqrt(2)