Home
Class 14
MATHS
sqrt(?)+136=(5)/(8) of 320...

`sqrt(?)+136=(5)/(8)` of 320

A

1936

B

4624

C

4196

D

4096

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{?} + 136 = \frac{5}{8} \times 320 \), we will follow these steps: ### Step 1: Calculate \( \frac{5}{8} \times 320 \) First, we need to find the value of \( \frac{5}{8} \) of 320. \[ \frac{5}{8} \times 320 = \frac{5 \times 320}{8} \] Calculating this gives: \[ \frac{5 \times 320}{8} = \frac{1600}{8} = 200 \] ### Step 2: Substitute the value back into the equation Now we substitute this value back into the original equation: \[ \sqrt{?} + 136 = 200 \] ### Step 3: Isolate \( \sqrt{?} \) Next, we isolate \( \sqrt{?} \) by subtracting 136 from both sides: \[ \sqrt{?} = 200 - 136 \] Calculating this gives: \[ \sqrt{?} = 64 \] ### Step 4: Square both sides to find \( ? \) Now, we square both sides to find the value of \( ? \): \[ ? = 64^2 \] Calculating \( 64^2 \): \[ ? = 4096 \] ### Final Answer Thus, the value of \( ? \) is \( 4096 \). ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

(sqrt(20))/(sqrt(320))= ______

Which value among sqrt(11) + sqrt(5), sqrt(14) + sqrt(2), sqrt(8) + sqrt(8) is the largest?

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

(iii) ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(1/3)