Home
Class 14
MATHS
If (sqrt(1296))/(x)=(x)/(2.25), then fin...

If `(sqrt(1296))/(x)=(x)/(2.25)`, then find the value of x.

A

6

B

8

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sqrt{1296}}{x} = \frac{x}{2.25}\), we will follow these steps: ### Step 1: Calculate the square root of 1296 First, we need to find \(\sqrt{1296}\). \[ \sqrt{1296} = 36 \] ### Step 2: Substitute the square root back into the equation Now we can substitute this value back into the equation: \[ \frac{36}{x} = \frac{x}{2.25} \] ### Step 3: Cross-multiply to eliminate the fractions Next, we cross-multiply to eliminate the fractions: \[ 36 \cdot 2.25 = x \cdot x \] This simplifies to: \[ 36 \cdot 2.25 = x^2 \] ### Step 4: Calculate \(36 \cdot 2.25\) Now we calculate \(36 \cdot 2.25\): \[ 36 \cdot 2.25 = 36 \cdot \frac{225}{100} = \frac{36 \cdot 225}{100} \] Calculating \(36 \cdot 225\): \[ 36 \cdot 225 = 8100 \] So, \[ \frac{8100}{100} = 81 \] Thus, we have: \[ x^2 = 81 \] ### Step 5: Take the square root of both sides Now we take the square root of both sides to solve for \(x\): \[ x = \sqrt{81} = 9 \] ### Conclusion Therefore, the value of \(x\) is: \[ \boxed{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

If x=(4sqrt(2))/(sqrt(2)+1) , then find the value of (x+2)/(x-2)-(x+2sqrt(2))/(x-2sqrt(2)) .

Find the value of x , 3/5 = x/-25

If x(sqrt(25)^(x+(1)/(4))*sqrt(5.5)^(-1))/(5sqrt(5)^(-x))=p, then find the value of p.

If x= (1)/(sqrt2) + (1)/(2) + (1)/(2sqrt2) +… + oo , then find the value of x + (1)/(x) .

If 5^(2x+1)-:25=125 find the value of x

If [3(3sqrt(x)-(1)/(3sqrt(x)))]^((1)/(3))=2 then find the value of 3sqrt(x)+(1)/(3sqrt(x))

If x^(2)= 25^(2)- 15^(2) , then find the value of x. A. 40 B. 50 C. 20 D. 25

If (110sqrt(25))/(sqrt(25)+x)=50, then the value of x is