Home
Class 14
MATHS
If x=2+sqrt(2) and y=2-sqrt(2), then fin...

If `x=2+sqrt(2)` and `y=2-sqrt(2)`, then find the value of `(x^(2)+y^(2))`.

A

12

B

14

C

6

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^2 + y^2 \) given \( x = 2 + \sqrt{2} \) and \( y = 2 - \sqrt{2} \), we can follow these steps: ### Step 1: Calculate \( x^2 \) Using the formula for squaring a binomial, we have: \[ x^2 = (2 + \sqrt{2})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{2} + (\sqrt{2})^2 \] Calculating each term: - \( 2^2 = 4 \) - \( 2 \cdot 2 \cdot \sqrt{2} = 4\sqrt{2} \) - \( (\sqrt{2})^2 = 2 \) So, combining these: \[ x^2 = 4 + 4\sqrt{2} + 2 = 6 + 4\sqrt{2} \] ### Step 2: Calculate \( y^2 \) Similarly, we calculate \( y^2 \): \[ y^2 = (2 - \sqrt{2})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{2} + (\sqrt{2})^2 \] Calculating each term: - \( 2^2 = 4 \) - \( -2 \cdot 2 \cdot \sqrt{2} = -4\sqrt{2} \) - \( (\sqrt{2})^2 = 2 \) So, combining these: \[ y^2 = 4 - 4\sqrt{2} + 2 = 6 - 4\sqrt{2} \] ### Step 3: Add \( x^2 \) and \( y^2 \) Now we can find \( x^2 + y^2 \): \[ x^2 + y^2 = (6 + 4\sqrt{2}) + (6 - 4\sqrt{2}) \] Combining like terms: \[ x^2 + y^2 = 6 + 6 + 4\sqrt{2} - 4\sqrt{2} = 12 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is \( \boxed{12} \). ---
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

If x = 2 + sqrt(2) and y = 2 - sqrt(2) , then the value of (x^(2) - y^(2)) is

If x=1+sqrt(2) and y=1-sqrt(2), find the value of (x^(2)+y^(2))

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-2) + y^(-2) .

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-3) + y^(-3) .

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

If x=(sqrt2+1)/(sqrt2-1)andx-y=4sqrt2 then the value of (x^(2)+y^(2)) is