Home
Class 14
MATHS
(sqrt(65025))^(2)=(?)^(2)...

`(sqrt(65025))^(2)=(?)^(2)`

A

`65.025`

B

`32512.5`

C

255

D

510

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{65025})^{2} = (?)^{2}\), we can follow these steps: ### Step 1: Simplify the Left Side The expression \((\sqrt{65025})^{2}\) can be simplified. The square root and the square cancel each other out. \[ (\sqrt{65025})^{2} = 65025 \] ### Step 2: Set Up the Equation Now we have: \[ 65025 = (?)^{2} \] ### Step 3: Take the Square Root To find the value of \( ? \), we need to take the square root of both sides of the equation: \[ ? = \sqrt{65025} \] ### Step 4: Calculate the Square Root To find \(\sqrt{65025}\), we can factor \(65025\) to find its prime factors. 1. **Finding Prime Factors:** - \(65025\) is odd, so we can start dividing by \(5\): - \(65025 \div 5 = 13005\) - \(13005 \div 5 = 2601\) - Now, \(2601\) can be divided by \(3\): - \(2601 \div 3 = 867\) - \(867 \div 3 = 289\) - Finally, \(289\) is \(17 \times 17\) (since \(17^2 = 289\)). Thus, the prime factorization of \(65025\) is: \[ 65025 = 5^2 \times 3^2 \times 17^2 \] 2. **Taking the Square Root:** - Now, we can take the square root of the prime factorization: \[ \sqrt{65025} = \sqrt{(5^2) \times (3^2) \times (17^2)} = 5 \times 3 \times 17 \] - Calculating this gives: \[ 5 \times 3 = 15 \] \[ 15 \times 17 = 255 \] ### Step 5: Conclusion Thus, we find that: \[ ? = 255 \] So the final answer is: \[ (\sqrt{65025})^{2} = 255^{2} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|3 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

(sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))^(2)

Simplify: (i) (2 sqrt(2) + 3 sqrt(3)) (2 sqrt(2) - 3 sqrt(3)) (ii) (2 sqrt(8) - 3 sqrt(2))^(2) (iii) (sqrt(7) + sqrt(6))^(2) (iv) (6 - sqrt(2))(2 + sqrt(3))

simplify ({sqrt(3)}-2{sqrt(2)})/({sqrt(3)}^(2)-2{sqrt(2)}^(2))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

((2+sqrt(3))/(sqrt(2)+sqrt(2+sqrt(3)))+(2-sqrt(3))/(sqrt(2)+sqrt(2-sqrt(3))))^(2)=

If a=(4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

(2+sqrt(2)+(1)/(2+sqrt(2))+(1)/(sqrt(2)-2)) simplifies to 2-sqrt(2)(b)2(c)2+sqrt(2)(d)2sqrt(2)