Home
Class 14
MATHS
If 3a=4b=6c and a+b+c=27sqrt(29) then sq...

If `3a=4b=6c` and `a+b+c=27sqrt(29)` then `sqrt(a^(2)+b^(2)+c^(2))` is equal to

A

`3sqrt(29)`

B

81

C

87

D

89

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

If3a=4b=6c and a+b+c= 27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal to

If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is (a) 3sqrt(29) (b) 81 (c) 87 (d) None of these

If a=2b=8c and a+b+c=13,then the value of (sqrt(a^(2)+b^(2)+c^(2)))/(2c) is:

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a=2b=8c and a+b+c = 13 then the value of (sqrt(a^2+b^2+c^2))/(2c) is: यदि a=2b=8c है, तथा a+b+c = 13 है, तो (sqrt(a^2+b^2+c^2))/(2c) का मान क्या होगा ?

If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) , then a^(2)+b^(2)-4a-6b-3 is equal to