Home
Class 14
MATHS
root(3)(1331)xx root(3)(216)+root(3)(729...

`root(3)(1331)xx root(3)(216)+root(3)(729)+root(3)(64)` is equal to

A

`13.62`

B

79

C

`14.82`

D

`90.88`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{1331} \times \sqrt[3]{216} + \sqrt[3]{729} + \sqrt[3]{64} \), we will evaluate each cube root step by step. ### Step 1: Calculate \( \sqrt[3]{1331} \) First, we need to factor 1331. We can see that: \[ 1331 = 11 \times 11 \times 11 = 11^3 \] Thus, \[ \sqrt[3]{1331} = \sqrt[3]{11^3} = 11 \] ### Step 2: Calculate \( \sqrt[3]{216} \) Next, we factor 216: \[ 216 = 6 \times 6 \times 6 = 6^3 \] So, \[ \sqrt[3]{216} = \sqrt[3]{6^3} = 6 \] ### Step 3: Calculate \( \sqrt[3]{729} \) Now, we factor 729: \[ 729 = 9 \times 9 \times 9 = 9^3 \] Thus, \[ \sqrt[3]{729} = \sqrt[3]{9^3} = 9 \] ### Step 4: Calculate \( \sqrt[3]{64} \) Finally, we factor 64: \[ 64 = 4 \times 4 \times 4 = 4^3 \] So, \[ \sqrt[3]{64} = \sqrt[3]{4^3} = 4 \] ### Step 5: Substitute the values back into the expression Now we can substitute the values we calculated back into the expression: \[ \sqrt[3]{1331} \times \sqrt[3]{216} + \sqrt[3]{729} + \sqrt[3]{64} = 11 \times 6 + 9 + 4 \] ### Step 6: Calculate the final result Now we perform the multiplication and addition: \[ 11 \times 6 = 66 \] Adding the other terms: \[ 66 + 9 + 4 = 66 + 13 = 79 \] ### Final Answer: Thus, the value of the expression is \[ \boxed{79} \]
Promotional Banner

Topper's Solved these Questions

  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE EXERCISE O BASE LEVEL QUESTIONS|54 Videos
  • SPEED, TIME AND DISTANCE

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|16 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos

Similar Questions

Explore conceptually related problems

root3(-1331)

root (3)(1331) xx root (3) (216) + root (3) (64) is equal to

root(3)(2) times root(3)(4)

root(3)(root(3)(a^(3))) is equal to

root(3)(7)times root(6)(6)

root(3)(2)+root(3)(16)-root(3)(54)

root(3)(4)times root(3)(16)