Home
Class 14
MATHS
Find the value of log(s) log(s) (3125)...

Find the value of `log_(s) log_(s) (3125)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{5} \log_{5} (3125) \), we will follow these steps: ### Step 1: Simplify \( 3125 \) First, we need to express \( 3125 \) in terms of powers of \( 5 \). We can factor \( 3125 \) as follows: \[ 3125 = 5 \times 625 \] Continuing to factor \( 625 \): \[ 625 = 5 \times 125 \] And \( 125 \): \[ 125 = 5 \times 25 \] And \( 25 \): \[ 25 = 5 \times 5 \] Thus, we can express \( 3125 \) as: \[ 3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5 \] ### Step 2: Calculate \( \log_{5} (3125) \) Now, we can calculate \( \log_{5} (3125) \): \[ \log_{5} (3125) = \log_{5} (5^5) \] Using the logarithmic property \( \log_{a} (a^b) = b \): \[ \log_{5} (5^5) = 5 \] ### Step 3: Calculate \( \log_{5} \log_{5} (3125) \) Now we substitute back into the original expression: \[ \log_{5} \log_{5} (3125) = \log_{5} (5) \] Using the property \( \log_{a} (a) = 1 \): \[ \log_{5} (5) = 1 \] ### Final Answer Thus, the value of \( \log_{5} \log_{5} (3125) \) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Solve using the identity log_(a)(b)=(log b)/(log a). Find the value of log_(25)(50)*log_(50)(25)

Find the value of log_(2)[log_(2){log_(3)(log_(3)27^(3))}]

Find the value of log_(4)*log_(2)log sqrt(2)log_(3)(x-21)=0

Find the value of log_(0.01)100

find the value of log_(sqrt8)16

ARIHANT SSC-LOGARITHM -EXERCISE LEVEL 2
  1. Find the value of log(s) log(s) (3125)

    Text Solution

    |

  2. Find the sum of 'n' terms of the series. log(2)(x/y) + log(4)(x/y)^(...

    Text Solution

    |

  3. Find the value of log m + logm^(2) + log m^(3) +……. + log m^(n):

    Text Solution

    |

  4. The greatest possible value of n could be if 9^(n)lt10^(8), given tha...

    Text Solution

    |

  5. The set of solution for all x satisfying the equation x^(log 3 x^(2...

    Text Solution

    |

  6. The set of all the solution of the inequality log(2-x) (x-3) ge 1 is :

    Text Solution

    |

  7. If log(3)30 =1/a and log(5) 30 = 1/b then the value of 3 log(30)2 is:

    Text Solution

    |

  8. Number of ways in which 20 different pearls of two colours can be set ...

    Text Solution

    |

  9. The number of solutions of the expression satisfying 4^(x^(2)+2)-9.2^(...

    Text Solution

    |

  10. Six teachers and six students have to sit round a circular table such ...

    Text Solution

    |

  11. The number of different words which can be formed from the letters of ...

    Text Solution

    |

  12. If a denotes the number of permutation of x+2 things taken all at a ti...

    Text Solution

    |

  13. The set S={1,2,3,...,12} is to be partitioned into three sets, A, B, C...

    Text Solution

    |

  14. The number of solutions of the equation log(x//2)x^(2) + 40 log(4x)...

    Text Solution

    |

  15. Ravish writes letters to his five friends and addresses the correspond...

    Text Solution

    |

  16. f:{1,2,3,4,5}→{1,2,3,4,5} that are onto and f(i)≠i, is equal to

    Text Solution

    |

  17. The least value of expression 2 log(10)x - log(x) (1//100) for x gt 1 ...

    Text Solution

    |

  18. The equation x^((3//4) (log(2)x)^(2) + log(2)x - (5//4)) = sqrt(2) has...

    Text Solution

    |

  19. From 6 different novels and 3 different dictionaries, 4 novels and 1 d...

    Text Solution

    |

  20. Find all real values of x satisfying equation: |x-1|^(log x^(2) - 2 ...

    Text Solution

    |