Home
Class 14
MATHS
Find the value of log(8)25, given that l...

Find the value of `log_(8)25`, given that `log_(10)2= 0.3010`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{8} 25 \) given that \( \log_{10} 2 = 0.3010 \), we can follow these steps: ### Step 1: Change of Base Formula We can use the change of base formula for logarithms, which states: \[ \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \] Here, we will convert \( \log_{8} 25 \) to base 10: \[ \log_{8} 25 = \frac{\log_{10} 25}{\log_{10} 8} \] ### Step 2: Express \( \log_{10} 8 \) and \( \log_{10} 25 \) Next, we can express \( 8 \) and \( 25 \) in terms of powers of \( 2 \) and \( 5 \): \[ 8 = 2^3 \quad \text{and} \quad 25 = 5^2 \] Thus, we can write: \[ \log_{10} 8 = \log_{10} (2^3) = 3 \log_{10} 2 \] \[ \log_{10} 25 = \log_{10} (5^2) = 2 \log_{10} 5 \] ### Step 3: Substitute Values Now we substitute these into our change of base formula: \[ \log_{8} 25 = \frac{2 \log_{10} 5}{3 \log_{10} 2} \] ### Step 4: Find \( \log_{10} 5 \) We can find \( \log_{10} 5 \) using the fact that \( \log_{10} 10 = 1 \): \[ \log_{10} 10 = \log_{10} (2 \cdot 5) = \log_{10} 2 + \log_{10} 5 \] This gives us: \[ 1 = \log_{10} 2 + \log_{10} 5 \implies \log_{10} 5 = 1 - \log_{10} 2 \] Substituting \( \log_{10} 2 = 0.3010 \): \[ \log_{10} 5 = 1 - 0.3010 = 0.6990 \] ### Step 5: Substitute \( \log_{10} 5 \) Back Now we substitute \( \log_{10} 5 \) back into our equation: \[ \log_{8} 25 = \frac{2 \cdot 0.6990}{3 \cdot 0.3010} \] ### Step 6: Calculate the Value Now we can calculate: \[ \log_{8} 25 = \frac{1.3980}{0.9030} \approx 1.54817 \] Thus, the value of \( \log_{8} 25 \) is approximately \( 1.54817 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_(10)(10.1) given that log_(10) e=0.4343 .

find the value of log_(0.6)(9/25)

Knowledge Check

  • Find the no of digit In 8^(57) (given that log_(10) 2 =0.3010 )

    A
    A)52
    B
    B)50
    C
    C)51
    D
    D)53
  • Find the number of digit in 8^(10) (given that log_(10) 2 =0.3010 )

    A
    A)19
    B
    B)20
    C
    C)17
    D
    D)10
  • Find the value of 1/2log 25-2log_(10) 3 + log_(10) 18

    A
    0
    B
    1
    C
    2
    D
    (1/2)
  • Similar Questions

    Explore conceptually related problems

    Find the approximate values of : log_(10)(1002)," given that "log_(10)e=0.4343 .

    Find the value of log 25, log 250 and log0.025

    Find the value of log_(10) (4.04) , it being given that log_(10) 4 = 0.6021 and log_(10) e = 0.4343

    Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

    Find the value of log_(10)0.13xx10^(8)