Home
Class 14
MATHS
Given log 2 = 0.3010 and log 3= 0.4771, ...

Given `log 2 = 0.3010` and log 3= 0.4771, find the value of log 45.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log 45 \) given that \( \log 2 = 0.3010 \) and \( \log 3 = 0.4771 \), we can follow these steps: ### Step 1: Express \( \log 45 \) in terms of known logarithms We can start by expressing \( 45 \) as a product of its prime factors: \[ 45 = 9 \times 5 \] Thus, we can write: \[ \log 45 = \log(9 \times 5) \] ### Step 2: Use the logarithmic property Using the property of logarithms that states \( \log(m \times n) = \log m + \log n \), we can rewrite the equation: \[ \log 45 = \log 9 + \log 5 \] ### Step 3: Express \( \log 9 \) in terms of \( \log 3 \) Since \( 9 = 3^2 \), we can use the power rule of logarithms, which states \( \log(n^x) = x \cdot \log n \): \[ \log 9 = \log(3^2) = 2 \cdot \log 3 \] Substituting this back into our equation gives: \[ \log 45 = 2 \cdot \log 3 + \log 5 \] ### Step 4: Express \( \log 5 \) using \( \log 10 \) and \( \log 2 \) We know that \( 10 = 2 \times 5 \), so we can express \( \log 5 \) as: \[ \log 5 = \log 10 - \log 2 \] Given that \( \log 10 = 1 \), we can substitute: \[ \log 5 = 1 - \log 2 \] ### Step 5: Substitute known values Now, substituting \( \log 3 \) and \( \log 2 \) into our equation: \[ \log 45 = 2 \cdot \log 3 + (1 - \log 2) \] Using the values \( \log 2 = 0.3010 \) and \( \log 3 = 0.4771 \): \[ \log 45 = 2 \cdot 0.4771 + (1 - 0.3010) \] ### Step 6: Calculate the values Calculating \( 2 \cdot 0.4771 \): \[ 2 \cdot 0.4771 = 0.9542 \] Now substituting this into the equation: \[ \log 45 = 0.9542 + (1 - 0.3010) \] Calculating \( 1 - 0.3010 \): \[ 1 - 0.3010 = 0.6990 \] Now, adding these two results together: \[ \log 45 = 0.9542 + 0.6990 = 1.6532 \] ### Final Answer Thus, the value of \( \log 45 \) is: \[ \log 45 = 1.6532 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

Given log2=0.3010 and log3=0.4771, find the value of log 45.

Given log 2 = 0.3010 and log 3= 0.4771. Find the value of log 0.0075

Knowledge Check

  • If log2=0.3010andlog3=0.4771 , find the value of log 6

    A
    3
    B
    0.22
    C
    6
    D
    0.77
  • If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

    A
    `0.3522`
    B
    `0.03522`
    C
    `1.3522`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    If log2=0.3010andlog3=0.4771 , find the value of log 5

    If log2=0.3010andlog3=0.4771 , find the value of logsqrt(24)

    If log2=0.301 and log3=0.477, find the value of log(3.375).

    Givenlog (2)=0.3010 and log_(10)(3)=0.4771 find the value of 7log_(10)((10)/(9))-2log_(10)((25)/(24))+3log_(10)((81)/(80))

    If log _(10)2=0.3010 and log_(10)3=0.4771 ,find the value of log_(10)(2.25)

    Given log 2 = 0. 30103, find log 0 .0005