Home
Class 14
MATHS
The value of log(3sqrt(2)) 5832 is:...

The value of `log_(3sqrt(2)) 5832` is:

A

`1/4`

B

`-5`

C

`-4`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{3\sqrt{2}} 5832 \), we can follow these steps: ### Step 1: Factor 5832 First, we need to factor the number 5832 to express it in terms of its prime factors. **Calculation:** - Divide 5832 by 2: \( 5832 \div 2 = 2916 \) - Divide 2916 by 2: \( 2916 \div 2 = 1458 \) - Divide 1458 by 2: \( 1458 \div 2 = 729 \) - Now, 729 is \( 3^6 \) (since \( 729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \)). So, we can express 5832 as: \[ 5832 = 2^3 \times 3^6 \] ### Step 2: Rewrite the logarithm using the change of base formula Now, we can rewrite the logarithm using the change of base formula: \[ \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \] In our case, we can use base 3: \[ \log_{3\sqrt{2}} 5832 = \frac{\log_{3} 5832}{\log_{3} (3\sqrt{2})} \] ### Step 3: Calculate \( \log_{3} 5832 \) Using the factorization from Step 1: \[ \log_{3} 5832 = \log_{3} (2^3 \times 3^6) = 3 \log_{3} 2 + 6 \log_{3} 3 \] Since \( \log_{3} 3 = 1 \): \[ \log_{3} 5832 = 3 \log_{3} 2 + 6 \] ### Step 4: Calculate \( \log_{3} (3\sqrt{2}) \) Now we calculate \( \log_{3} (3\sqrt{2}) \): \[ \log_{3} (3\sqrt{2}) = \log_{3} 3 + \log_{3} \sqrt{2} \] \[ = 1 + \frac{1}{2} \log_{3} 2 \] ### Step 5: Substitute back into the logarithm Now we substitute back into our logarithm: \[ \log_{3\sqrt{2}} 5832 = \frac{3 \log_{3} 2 + 6}{1 + \frac{1}{2} \log_{3} 2} \] ### Step 6: Simplify the expression Let \( x = \log_{3} 2 \): \[ \log_{3\sqrt{2}} 5832 = \frac{3x + 6}{1 + \frac{1}{2}x} \] To simplify: Multiply numerator and denominator by 2 to eliminate the fraction in the denominator: \[ = \frac{2(3x + 6)}{2 + x} = \frac{6x + 12}{2 + x} \] ### Final Answer Thus, the value of \( \log_{3\sqrt{2}} 5832 \) is: \[ \frac{6x + 12}{2 + x} \] where \( x = \log_{3} 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

log_(3sqrt(2))324

If log_(sqrt(3))5=a and log_(sqrt(3))2=b then value of log_(sqrt(3))300 is

The value of log_(3)(27sqrt(3)) is

The value of log_(2sqrt(3))(1728) is

If A=log_(sqrt(3))(sqrt(3sqrt(3sqrt(3sqrt(3)))))* then the value of log_(sqrt(2))(8A+1) is equal to

The value of 2(log_(sqrt(2)+1)sqrt(3-2sqrt(2))+log_((2)/(sqrt(3+1)))(6sqrt(3)-10)) is

Determine the value of log_(3sqrt(2))((1)/(18))* a.2b .-2c.sqrt(2)d.sqrt(3)

The value of log_((8-3sqrt7))(8+3sqrt7) is