Home
Class 14
MATHS
The value of log(-1//5) 625 is:...

The value of `log_(-1//5) 625` is:

A

`1/4`

B

`-5`

C

`-4`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question `log_(-1/5) 625`, we will follow the properties of logarithms step by step. ### Step-by-Step Solution: 1. **Identify the Base and Argument**: We have the logarithm with base `-1/5` and the argument `625`. \[ \text{We need to find } \log_{(-1/5)}(625) \] 2. **Convert the Base**: We can express the base `-1/5` as `5^{-1}`. This means we can rewrite the logarithm as: \[ \log_{(-1/5)}(625) = \log_{(5^{-1})}(625) \] 3. **Apply the Change of Base Formula**: Using the property of logarithms, we know that: \[ \log_{(a^b)}(c) = \frac{1}{b} \log_a(c) \] Applying this property here gives us: \[ \log_{(5^{-1})}(625) = \frac{1}{-1} \log_{5}(625) = -\log_{5}(625) \] 4. **Factor 625**: Next, we need to express `625` in terms of base `5`. We know that: \[ 625 = 5^4 \] 5. **Calculate the Logarithm**: Now we can substitute `625` back into the logarithm: \[ -\log_{5}(625) = -\log_{5}(5^4) \] Using the property of logarithms that states `log_a(a^b) = b`, we have: \[ -\log_{5}(5^4) = -4 \] 6. **Final Result**: Therefore, the value of `log_{(-1/5)}(625)` is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

1.If log_(10)2=p ,then the value of log_(10)5 is

1.If log_(10)2=p ,then the value of log_(10)5 is

The value of (1)/(5) log_(10) 3125 -4 log_(10)2 +log_(10)32 is

The value of (6.25)^(-1//2) is

The value of (log)_(2)((log)_(5)625) is 2 b.5c.10 d.15

The value of (1/(log_(5)210) + 1/(log_(6) 210) + 1/(log_(7)210)) is:

The value of log_((1)/(6))2*log_(5)36*log_(17)125*log_((1)/(sqrt(2)))17 is equal to