Home
Class 14
MATHS
The value of log(10)(0.0001) is:...

The value of `log_(10)(0.0001)` is:

A

`1/1000`

B

`-3`

C

`-4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10}(0.0001) \), we can follow these steps: ### Step 1: Rewrite the number in scientific notation The number \( 0.0001 \) can be rewritten in scientific notation. \[ 0.0001 = 1 \times 10^{-4} \] ### Step 2: Apply the logarithmic property Using the property of logarithms that states \( \log_{a}(b \times c) = \log_{a}(b) + \log_{a}(c) \), we can express the logarithm of a product: \[ \log_{10}(0.0001) = \log_{10}(1 \times 10^{-4}) = \log_{10}(1) + \log_{10}(10^{-4}) \] ### Step 3: Calculate each logarithm We know that \( \log_{10}(1) = 0 \) because any number to the power of 0 is 1. Now we calculate \( \log_{10}(10^{-4}) \): \[ \log_{10}(10^{-4}) = -4 \] ### Step 4: Combine the results Now, we can combine the results from Step 2: \[ \log_{10}(0.0001) = 0 + (-4) = -4 \] ### Final Answer Thus, the value of \( \log_{10}(0.0001) \) is: \[ \boxed{-4} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

The value of log_(10)(.0001) is a.(1)/(4) b.-(1)/(4) c.-4 d.4

Find the value of log_(10)(10.1) given that log_(10) e=0.4343 .

If log_(10)2=0.3010 , then the value of log_(10)80 is

Find the value of log_(10) (4.04) , it being given that log_(10) 4 = 0.6021 and log_(10) e = 0.4343

If log_(10) 3=1.4771 and log_(10) 7=0.8451, then the value of log_(10)(23 1/3) is equal to a. 0. 368 b. 1. 368 c. 1. 356 d. 1. 477