Home
Class 14
MATHS
The value of log(10)1 + log(10) 10 + log...

The value of `log_(10)1 + log_(10) 10 + log_(10)100+`…….. `log_(10)(10000000000)`

A

10

B

11

C

11111111111

D

55

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \log_{10}1 + \log_{10}10 + \log_{10}100 + \log_{10}1000 + \ldots + \log_{10}(10000000000) \] ### Step 1: Identify the terms in the series The series consists of logarithms of powers of 10. We can express each term as follows: - \(\log_{10}1 = \log_{10}(10^0) = 0\) - \(\log_{10}10 = \log_{10}(10^1) = 1\) - \(\log_{10}100 = \log_{10}(10^2) = 2\) - \(\log_{10}1000 = \log_{10}(10^3) = 3\) - ... - \(\log_{10}(10000000000) = \log_{10}(10^{10}) = 10\) ### Step 2: Write the series in terms of powers The series can be rewritten as: \[ 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 \] ### Step 3: Use the formula for the sum of the first n natural numbers The sum of the first \(n\) natural numbers is given by the formula: \[ S_n = \frac{n(n + 1)}{2} \] In our case, \(n = 10\). ### Step 4: Calculate the sum Substituting \(n = 10\) into the formula: \[ S_{10} = \frac{10(10 + 1)}{2} = \frac{10 \times 11}{2} = \frac{110}{2} = 55 \] ### Conclusion Thus, the value of the expression \(\log_{10}1 + \log_{10}10 + \log_{10}100 + \ldots + \log_{10}(10000000000)\) is: \[ \boxed{55} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

log_(10)10+log_(10)10^(2)+ . . .+log_(10)10^(n)

Find the value of log_(10)5*log_(10)20+(log_(10)2)^(2)

The value of (1)/(5) log_(10) 3125 -4 log_(10)2 +log_(10)32 is

The value of (log_(10)2)^(3)+log_(10)8log_(10)5+(log_(10)5)^(3) is

log_(10)3+log_(10)2-2log_(10)5

The value of 6^(log_(10)40)*5^(log_(10)36) is