Home
Class 14
MATHS
The value of log(5)5 + log(5)5^(2) + log...

The value of `log_(5)5 + log_(5)5^(2) + log_(5)5^(3)`+…… + `log_(5)5^(n)`:

A

n!

B

`n^(2)-1`

C

`((n+1)n)/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{5}5 + \log_{5}5^{2} + \log_{5}5^{3} + \ldots + \log_{5}5^{n} \), we can follow these steps: ### Step 1: Rewrite the logarithmic terms Each term in the series can be simplified using the property of logarithms: \[ \log_{a}(b^{c}) = c \cdot \log_{a}(b) \] Thus, we can rewrite the terms: \[ \log_{5}5^{1} + \log_{5}5^{2} + \log_{5}5^{3} + \ldots + \log_{5}5^{n} = 1 \cdot \log_{5}5 + 2 \cdot \log_{5}5 + 3 \cdot \log_{5}5 + \ldots + n \cdot \log_{5}5 \] ### Step 2: Factor out the common logarithmic term Since \( \log_{5}5 \) is common in all terms, we can factor it out: \[ = \log_{5}5 \cdot (1 + 2 + 3 + \ldots + n) \] ### Step 3: Calculate the sum of the first n natural numbers The sum of the first \( n \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Thus, we can substitute this sum into our expression: \[ = \log_{5}5 \cdot \frac{n(n + 1)}{2} \] ### Step 4: Simplify using the value of \( \log_{5}5 \) Since \( \log_{5}5 = 1 \), we can simplify further: \[ = 1 \cdot \frac{n(n + 1)}{2} = \frac{n(n + 1)}{2} \] ### Final Answer Thus, the value of \( \log_{5}5 + \log_{5}5^{2} + \log_{5}5^{3} + \ldots + \log_{5}5^{n} \) is: \[ \frac{n(n + 1)}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

log_(5)4*log_(2)5

The value of log_(3)4log_(4)5log_(5)6...log_(8)9=

log_(5)2 + log_(5)20 - log_(5)8 = _____

The value of lim_(x rarr1)(log_(5)5x)^(log_(x)5) is