Home
Class 14
MATHS
The value of ""(25)^(-1//4 log(5)(25)) i...

The value of `""_(25)^(-1//4 log_(5)(25))` is:

A

`1/5`

B

`-1/25`

C

`-25`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 25^{-\frac{1}{4} \log_{5}(25)} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 25^{-\frac{1}{4} \log_{5}(25)} \] ### Step 2: Change the base of the logarithm We know that \( 25 \) can be expressed as \( 5^2 \). Therefore, we can rewrite \( \log_{5}(25) \) as: \[ \log_{5}(25) = \log_{5}(5^2) = 2 \] ### Step 3: Substitute the value of the logarithm Now, we substitute \( \log_{5}(25) \) back into the expression: \[ 25^{-\frac{1}{4} \cdot 2} \] ### Step 4: Simplify the exponent Calculating the exponent: \[ -\frac{1}{4} \cdot 2 = -\frac{2}{4} = -\frac{1}{2} \] Thus, our expression simplifies to: \[ 25^{-\frac{1}{2}} \] ### Step 5: Rewrite \( 25 \) in terms of base \( 5 \) Again, we know \( 25 = 5^2 \), so we can rewrite the expression: \[ (5^2)^{-\frac{1}{2}} \] ### Step 6: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \): \[ 5^{2 \cdot -\frac{1}{2}} = 5^{-1} \] ### Step 7: Simplify the expression Finally, we can express \( 5^{-1} \) as: \[ \frac{1}{5} \] ### Final Answer Thus, the value of \( 25^{-\frac{1}{4} \log_{5}(25)} \) is: \[ \frac{1}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

The value of 25^((-1//4log_(5)25)) is equal to

The value of 5^(1/4)xx(125)^(0.25) is: a.sqrt(5)b.5c .5sqrt(5)d.25

The value of (3log_(2)((81)/(80))+5log_(2)((25)/(24))+7log_(2)((16)/(15))) is

Solve using the identity log_(a)(b)=(log b)/(log a). Find the value of log_(25)(50)*log_(50)(25)