Home
Class 14
MATHS
If log(7)x = 4/3, then the value of x is...

If `log_(7)x = 4/3`, then the value of x is:

A

9

B

27

C

81

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{7}x = \frac{4}{3} \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation in exponential form The logarithmic equation \( \log_{a}b = c \) can be rewritten in exponential form as \( b = a^c \). Here, \( a = 7 \), \( b = x \), and \( c = \frac{4}{3} \). So, we rewrite it as: \[ x = 7^{\frac{4}{3}} \] ### Step 2: Simplify \( 7^{\frac{4}{3}} \) To simplify \( 7^{\frac{4}{3}} \), we can express it as: \[ x = \left(7^4\right)^{\frac{1}{3}} \] ### Step 3: Calculate \( 7^4 \) Now, we need to calculate \( 7^4 \): \[ 7^4 = 7 \times 7 \times 7 \times 7 = 49 \times 49 = 2401 \] ### Step 4: Take the cube root Now, we need to find the cube root of \( 2401 \): \[ x = \sqrt[3]{2401} \] ### Final Result Thus, the value of \( x \) is: \[ x = 7^{\frac{4}{3}} \text{ or } x = \sqrt[3]{2401} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(8)x=(2)/(3), then the value of x is a.(3)/(4)b .(4)/(3)c.3d.4

If log_(x) (8x -3) - log_(x) 4 = 2 , then the value of x is

If 3^(((log_(3)7)^(x))=7^(((log_(7)3))^(x)), then the value of x will be

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

If log_(4).(x^(4))/(4)+3log_(4) 4x^(4) = p + q log_(4) x , then the value of log_(p)(q) is ______.

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

log_(2)x=-log_((1)/(2))7, then the value of x is