Home
Class 14
MATHS
If log(100) x=-4, then the value of x is...

If `log_(100) x=-4`, then the value of x is:

A

`1/(10^(-4))`

B

`(10)^(-4)`

C

`1/(10^(8))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{100} x = -4 \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation in exponential form The property of logarithms states that if \( \log_a b = c \), then \( b = a^c \). In this case, we have: \[ x = 100^{-4} \] ### Step 2: Simplify \( 100^{-4} \) Next, we need to simplify \( 100^{-4} \). We know that: \[ 100 = 10^2 \] Thus, we can rewrite \( 100^{-4} \) as: \[ 100^{-4} = (10^2)^{-4} \] ### Step 3: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we have: \[ (10^2)^{-4} = 10^{2 \cdot (-4)} = 10^{-8} \] ### Step 4: Write the final value of \( x \) Now we can express \( x \) as: \[ x = 10^{-8} \] ### Conclusion Thus, the value of \( x \) is: \[ x = \frac{1}{10^8} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(100)x =-1/2 , then the value of x is:

If log_(7)x = 4/3 , then the value of x is:

If log_(2) log_(10)4x=1 , then the value of x is:

If log_(x)(0.2) =-1/4 , then the value of x is:

if log_(x)(4/9)=-1/2 , then the value of x is: