Home
Class 14
MATHS
if log(e)(x-1) + log(e)(x) + log(e)(x+1)...

if `log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0`, then

A

`x^(2) + e^(-1)`

B

`x^(3) -x-1=0`

C

`x^(2) +e-1=0`

D

`x^(3) -x-e=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

In the expansion of 2 log_(n) x- log_(n) (x+1) - log_(e)(x-1), the coefficient of x^(-4) is

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

If int(log_(x)e.log_(ex)e.log_(e^(2)x)e)/(x)dx=A log_(e)(log_(e)x)+Blog_(e)(1+log_(e)x)+Clog_(e)(2+log_(e)x)+lambda, then

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

If log e^(x)+log e^(1+x)=0 then x=

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. If log(x)(0.2) =-1/4, then the value of x is:

    Text Solution

    |

  2. The value of x satisfying log(243) x=0.8 is:

    Text Solution

    |

  3. if log(e)(x-1) + log(e)(x) + log(e)(x+1)=0, then

    Text Solution

    |

  4. The value of log(3) 5 xx log(25)9 is

    Text Solution

    |

  5. The value of log (14/3) + log (11/5) - log (22/15) is:

    Text Solution

    |

  6. The value of [3 log (81/80) + 5 log (25/24) + 7 log (16/15)] is:

    Text Solution

    |

  7. (log (a^(3)/(bc)) + log (b^(3)/(ac)) + log (c^(3)/(ab))) is equal to :

    Text Solution

    |

  8. (1/(log(a)bc+1) + 1/(log(b) ac +1) + 1/(log(c)ab+1)+1) is equal to:

    Text Solution

    |

  9. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  10. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  11. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  12. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  13. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  14. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  15. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  16. If log(m+n) = log m + log n, then:

    Text Solution

    |

  17. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  18. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  19. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  20. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |