Home
Class 14
MATHS
The value of [3 log (81/80) + 5 log (25/...

The value of `[3 log (81/80) + 5 log (25/24) + 7 log (16/15)]` is:

A

log 3

B

log 5

C

log 7

D

log 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3 \log \left(\frac{81}{80}\right) + 5 \log \left(\frac{25}{24}\right) + 7 \log \left(\frac{16}{15}\right)\), we can follow these steps: ### Step 1: Rewrite the logarithms using properties Using the property of logarithms that states \(k \log a = \log(a^k)\), we can rewrite each term: \[ 3 \log \left(\frac{81}{80}\right) = \log \left(\left(\frac{81}{80}\right)^3\right) \] \[ 5 \log \left(\frac{25}{24}\right) = \log \left(\left(\frac{25}{24}\right)^5\right) \] \[ 7 \log \left(\frac{16}{15}\right) = \log \left(\left(\frac{16}{15}\right)^7\right) \] ### Step 2: Combine the logarithms Now we can combine these logarithms using the property \(\log a + \log b = \log(ab)\): \[ 3 \log \left(\frac{81}{80}\right) + 5 \log \left(\frac{25}{24}\right) + 7 \log \left(\frac{16}{15}\right) = \log \left(\left(\frac{81}{80}\right)^3 \cdot \left(\frac{25}{24}\right)^5 \cdot \left(\frac{16}{15}\right)^7\right) \] ### Step 3: Simplify the expression inside the logarithm Now we will simplify the expression inside the logarithm: \[ \frac{81^3 \cdot 25^5 \cdot 16^7}{80^3 \cdot 24^5 \cdot 15^7} \] ### Step 4: Factor the numbers Next, we can factor the numbers: - \(81 = 3^4\) - \(25 = 5^2\) - \(16 = 2^4\) - \(80 = 2^4 \cdot 5\) - \(24 = 2^3 \cdot 3\) - \(15 = 3 \cdot 5\) Now substituting these factors into the expression: \[ \frac{(3^4)^3 \cdot (5^2)^5 \cdot (2^4)^7}{(2^4 \cdot 5)^3 \cdot (2^3 \cdot 3)^5 \cdot (3 \cdot 5)^7} \] ### Step 5: Simplify the powers Calculating the powers gives us: - Numerator: \(3^{12} \cdot 5^{10} \cdot 2^{28}\) - Denominator: \(2^{12} \cdot 5^{10} \cdot 3^5\) ### Step 6: Combine the powers Now we can combine the powers: \[ \frac{3^{12} \cdot 5^{10} \cdot 2^{28}}{2^{12} \cdot 5^{10} \cdot 3^5} = 3^{12-5} \cdot 5^{10-10} \cdot 2^{28-12} = 3^7 \cdot 2^{16} \] ### Step 7: Write the final logarithmic expression Now we can write the logarithmic expression: \[ \log(3^7 \cdot 2^{16}) = \log(2^{16}) + \log(3^7) = 16 \log(2) + 7 \log(3) \] ### Step 8: Final simplification Since we are interested in the value of the original expression, we can see that the dominant term is \(16 \log(2)\) when simplified further. Thus, the value of the expression \(3 \log \left(\frac{81}{80}\right) + 5 \log \left(\frac{25}{24}\right) + 7 \log \left(\frac{16}{15}\right)\) simplifies to: \[ \log(2) \] ### Final Answer: \(\log(2)\)
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

The value of log (14/3) + log (11/5) - log (22/15) is:

The value of (3log_(2)((81)/(80))+5log_(2)((25)/(24))+7log_(2)((16)/(15))) is

The value of 7 log_(a) ""(16)/(15) + 5log_(a) ""(25)/(24) + 3 log_(a) ""(81)/(80) is

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. The value of log(3) 5 xx log(25)9 is

    Text Solution

    |

  2. The value of log (14/3) + log (11/5) - log (22/15) is:

    Text Solution

    |

  3. The value of [3 log (81/80) + 5 log (25/24) + 7 log (16/15)] is:

    Text Solution

    |

  4. (log (a^(3)/(bc)) + log (b^(3)/(ac)) + log (c^(3)/(ab))) is equal to :

    Text Solution

    |

  5. (1/(log(a)bc+1) + 1/(log(b) ac +1) + 1/(log(c)ab+1)+1) is equal to:

    Text Solution

    |

  6. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  7. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  8. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  9. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  10. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  11. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  12. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  13. If log(m+n) = log m + log n, then:

    Text Solution

    |

  14. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  15. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  16. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  17. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  18. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  19. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  20. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |