Home
Class 14
MATHS
(log (a^(3)/(bc)) + log (b^(3)/(ac)) + l...

`(log (a^(3)/(bc)) + log (b^(3)/(ac)) + log (c^(3)/(ab)))` is equal to :

A

1

B

log abc

C

abc

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log \left( \frac{a^3}{bc} \right) + \log \left( \frac{b^3}{ac} \right) + \log \left( \frac{c^3}{ab} \right) \), we can follow these steps: ### Step 1: Use the property of logarithms We know that \( \log(x) + \log(y) = \log(xy) \). Therefore, we can combine the logarithmic expressions: \[ \log \left( \frac{a^3}{bc} \right) + \log \left( \frac{b^3}{ac} \right) + \log \left( \frac{c^3}{ab} \right) = \log \left( \left( \frac{a^3}{bc} \right) \cdot \left( \frac{b^3}{ac} \right) \cdot \left( \frac{c^3}{ab} \right) \right) \] ### Step 2: Simplify the product inside the logarithm Now we need to simplify the product: \[ \frac{a^3}{bc} \cdot \frac{b^3}{ac} \cdot \frac{c^3}{ab} \] This can be rewritten as: \[ \frac{a^3 \cdot b^3 \cdot c^3}{(bc)(ac)(ab)} \] ### Step 3: Expand the denominator The denominator can be expanded: \[ (bc)(ac)(ab) = b^2c^2a^2 \] ### Step 4: Combine the fractions Now we can combine the fractions: \[ \frac{a^3 \cdot b^3 \cdot c^3}{a^2b^2c^2} = \frac{a^{3-2} \cdot b^{3-2} \cdot c^{3-2}}{1} = abc \] ### Step 5: Write the final logarithmic expression Now we can write: \[ \log \left( abc \right) \] ### Final Answer Thus, the final result is: \[ \log(abc) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

[[[log((a^(2))/(bc))+log((b^(2))/(ac))+log((c^(2))/(ab))] is equal to a.0 b.1 c.2 d.abc is

log_(b)(a^((1)/(2)))*log_(c)b^(3)*log_(a)(c^((2)/(3))) is equal to

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to:

If log_(a)(ab)=x then log_(b)(ab) is equals to

(1)/((log_(a)bc)+1)+(1)/((log_(b)ac)+1)+(1)/((log_(c)ab)+1) is equal to

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. The value of log (14/3) + log (11/5) - log (22/15) is:

    Text Solution

    |

  2. The value of [3 log (81/80) + 5 log (25/24) + 7 log (16/15)] is:

    Text Solution

    |

  3. (log (a^(3)/(bc)) + log (b^(3)/(ac)) + log (c^(3)/(ab))) is equal to :

    Text Solution

    |

  4. (1/(log(a)bc+1) + 1/(log(b) ac +1) + 1/(log(c)ab+1)+1) is equal to:

    Text Solution

    |

  5. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  6. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  7. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  8. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  9. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  10. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  11. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  12. If log(m+n) = log m + log n, then:

    Text Solution

    |

  13. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  14. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  15. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  16. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  17. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  18. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  19. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  20. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |