Home
Class 14
MATHS
1/(log(ab)abc) + 1/(log(bc) abc) + 1/(lo...

`1/(log_(ab)abc) + 1/(log_(bc) abc) + 1/(log_(ca)abc)` is equal to:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} \), we can use the change of base formula for logarithms. The change of base formula states that: \[ \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \] We can apply this property to each term in our expression. ### Step 1: Rewrite each logarithm using the change of base formula Using the change of base formula, we can rewrite each term: \[ \log_{ab} abc = \frac{\log abc}{\log ab} \] \[ \log_{bc} abc = \frac{\log abc}{\log bc} \] \[ \log_{ca} abc = \frac{\log abc}{\log ca} \] ### Step 2: Substitute back into the expression Now, substituting these back into the original expression gives us: \[ \frac{1}{\log_{ab} abc} = \frac{\log ab}{\log abc} \] \[ \frac{1}{\log_{bc} abc} = \frac{\log bc}{\log abc} \] \[ \frac{1}{\log_{ca} abc} = \frac{\log ca}{\log abc} \] Thus, we can rewrite the entire expression as: \[ \frac{\log ab}{\log abc} + \frac{\log bc}{\log abc} + \frac{\log ca}{\log abc} \] ### Step 3: Combine the fractions Since all terms have a common denominator, we can combine them: \[ \frac{\log ab + \log bc + \log ca}{\log abc} \] ### Step 4: Use the property of logarithms Using the property of logarithms that states \( \log a + \log b = \log(ab) \), we can simplify the numerator: \[ \log ab + \log bc + \log ca = \log(a \cdot b) + \log(b \cdot c) + \log(c \cdot a) \] This can be rewritten as: \[ \log(abc \cdot ab \cdot bc \cdot ca) = \log(a^2 b^2 c^2) \] ### Step 5: Final simplification Now substituting this back into our expression gives: \[ \frac{\log(a^2 b^2 c^2)}{\log abc} \] Using the property of logarithms again, we can simplify: \[ \log(a^2 b^2 c^2) = 2 \log(abc) \] So, we have: \[ \frac{2 \log(abc)}{\log(abc)} = 2 \] ### Final Answer Thus, the final result is: \[ \frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to:

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

Show that (1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1 .

(1)/((log_(a)bc)+1)+(1)/((log_(b)ac)+1)+(1)/((log_(c)ab)+1) is equal to

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

(1)/(log_(a)(ab))+(1)/(log_(b)(ab))=1

(1)/(log_(a)(ab)+(1)/(log_(b)(ab)=1))

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. (log (a^(3)/(bc)) + log (b^(3)/(ac)) + log (c^(3)/(ab))) is equal to :

    Text Solution

    |

  2. (1/(log(a)bc+1) + 1/(log(b) ac +1) + 1/(log(c)ab+1)+1) is equal to:

    Text Solution

    |

  3. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  4. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  5. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  6. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  7. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  8. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  9. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  10. If log(m+n) = log m + log n, then:

    Text Solution

    |

  11. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  12. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  13. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  14. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  15. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  16. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  17. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  18. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  19. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  20. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |