Home
Class 14
MATHS
The value of (1/(log(5)210) + 1/(log(6) ...

The value of `(1/(log_(5)210) + 1/(log_(6) 210) + 1/(log_(7)210))` is:

A

0

B

1

C

18

D

21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\log_{5} 210} + \frac{1}{\log_{6} 210} + \frac{1}{\log_{7} 210} \), we will use the change of base formula for logarithms and properties of logarithms. ### Step-by-step Solution: 1. **Apply the Change of Base Formula**: The change of base formula states that: \[ \log_{b} a = \frac{\log_{k} a}{\log_{k} b} \] where \( k \) is any positive number. We can use this to rewrite each term: \[ \frac{1}{\log_{5} 210} = \frac{\log_{10} 5}{\log_{10} 210}, \quad \frac{1}{\log_{6} 210} = \frac{\log_{10} 6}{\log_{10} 210}, \quad \frac{1}{\log_{7} 210} = \frac{\log_{10} 7}{\log_{10} 210} \] 2. **Combine the Terms**: Now, we can combine these fractions: \[ \frac{1}{\log_{5} 210} + \frac{1}{\log_{6} 210} + \frac{1}{\log_{7} 210} = \frac{\log_{10} 5 + \log_{10} 6 + \log_{10} 7}{\log_{10} 210} \] 3. **Use the Property of Logarithms**: We know that: \[ \log_{10} a + \log_{10} b + \log_{10} c = \log_{10} (a \cdot b \cdot c) \] Therefore: \[ \log_{10} 5 + \log_{10} 6 + \log_{10} 7 = \log_{10} (5 \cdot 6 \cdot 7) \] 4. **Calculate the Product**: Now, calculate \( 5 \cdot 6 \cdot 7 \): \[ 5 \cdot 6 = 30, \quad 30 \cdot 7 = 210 \] Thus: \[ \log_{10} (5 \cdot 6 \cdot 7) = \log_{10} 210 \] 5. **Substitute Back**: Substitute this back into our expression: \[ \frac{\log_{10} 210}{\log_{10} 210} = 1 \] ### Final Answer: The value of \( \frac{1}{\log_{5} 210} + \frac{1}{\log_{6} 210} + \frac{1}{\log_{7} 210} \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

The value of ((1)/(log_(3)60)+(1)/(log_(4)60)+(1)/(log_(5)60)) is

(1)/(log_(5)5)+(1)/(log_(5)5)

(log_(5)6) /(log_(5)2 + 1) =

the value of 5^(log_(7)11)-11^(log_(7)5) is

The value of (5)/(log_(2)(2016))+(2)/(log_(3)(2016))+(1)/(log_(7)(2016)) is

The value of log_((1)/(5))625 is

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. (1/(log(a)bc+1) + 1/(log(b) ac +1) + 1/(log(c)ab+1)+1) is equal to:

    Text Solution

    |

  2. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  3. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  4. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  5. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  6. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  7. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  8. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  9. If log(m+n) = log m + log n, then:

    Text Solution

    |

  10. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  11. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  12. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  13. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  14. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  15. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  16. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  17. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  18. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  19. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  20. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |