Home
Class 14
MATHS
The value of [1/(log(a//b)x) + 1/(log(b/...

The value of `[1/(log_(a//b)x) + 1/(log_(b//c)x) + 1/(log_(c//a) x)]` is:

A

0

B

1

C

abc

D

`x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1}{\log_{a/b} x} + \frac{1}{\log_{b/c} x} + \frac{1}{\log_{c/a} x}\), we can use properties of logarithms to simplify it step by step. ### Step 1: Apply the Change of Base Formula Using the property of logarithms that states \(\log_{a/b} x = \frac{1}{\log_{x} (a/b)}\), we can rewrite each term in the expression: \[ \frac{1}{\log_{a/b} x} = \log_{x} (a/b) \] \[ \frac{1}{\log_{b/c} x} = \log_{x} (b/c) \] \[ \frac{1}{\log_{c/a} x} = \log_{x} (c/a) \] ### Step 2: Combine the Logarithms Now we can combine these logarithmic terms: \[ \log_{x} (a/b) + \log_{x} (b/c) + \log_{x} (c/a) \] Using the property of logarithms that states \(\log_{x} m + \log_{x} n = \log_{x} (m \cdot n)\), we can combine the logs: \[ \log_{x} \left( \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a} \right) \] ### Step 3: Simplify the Argument Now, simplify the argument of the logarithm: \[ \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a} = \frac{a \cdot b \cdot c}{b \cdot c \cdot a} = 1 \] ### Step 4: Evaluate the Logarithm Now we have: \[ \log_{x} (1) \] Using the property of logarithms that states \(\log_{b} (1) = 0\) for any base \(b\), we find: \[ \log_{x} (1) = 0 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

(1)/(log_(a)(b))xx(1)/(log_(b)(c))xx(1)/(log_(c)(a)) is equal to

If a,b,c are in GP then 1/(log_(a)x), 1/(log_(b)x), 1/(log_( c)x) are in:

(1)/(log_((a)/(b))x)+(1)/(log_((b)/(c))x)+(1)/(log_((c)/(a))x) is equal to:

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. 1/(log(ab)abc) + 1/(log(bc) abc) + 1/(log(ca)abc) is equal to:

    Text Solution

    |

  2. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  3. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  4. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  5. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  6. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  7. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  8. If log(m+n) = log m + log n, then:

    Text Solution

    |

  9. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  10. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  11. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  12. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  13. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  14. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  15. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  16. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  17. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  18. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  19. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  20. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |