Home
Class 14
MATHS
If log(10)2 = 0.3010, then log(2) 10 is:...

If `log_(10)2 = 0.3010`, then `log_(2) 10` is:

A

3.01

B

1.505

C

3.3222

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{2} 10 \) given that \( \log_{10} 2 = 0.3010 \), we can use the property of logarithms that states: \[ \log_{a} b = \frac{1}{\log_{b} a} \] ### Step-by-Step Solution: 1. **Use the reciprocal property of logarithms**: We know that: \[ \log_{2} 10 = \frac{1}{\log_{10} 2} \] This means we can find \( \log_{2} 10 \) by taking the reciprocal of \( \log_{10} 2 \). 2. **Substitute the known value**: Given \( \log_{10} 2 = 0.3010 \), we substitute this value into the equation: \[ \log_{2} 10 = \frac{1}{0.3010} \] 3. **Calculate the reciprocal**: Now we need to calculate \( \frac{1}{0.3010} \): \[ \log_{2} 10 \approx 3.32 \] (You can use a calculator to find this value more accurately.) 4. **Final Result**: Therefore, the value of \( \log_{2} 10 \) is approximately \( 3.32 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If "log"_(10) 2 = 0.3010, "then log"_(5) 64=

If log_10 2 = 0.3010 is given, then log_2 10 is equal to :

If log_(10)2= 0.3010 , then log_(10)5 = _______

If log_(10)2=0.3010, the value of log_(10)5 is a.0.3241 b.0.6911 c.0.6990 d.0.7525

If log_(10) 2 = 0.030103, log_(10) 50 =

If log_(10)2=0.3010, the value of log_(10)25 is a.0.6020 b.1.2040 c.1.3980 d.1.5050

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. The value of (1/(log(5)210) + 1/(log(6) 210) + 1/(log(7)210)) is:

    Text Solution

    |

  2. The value of [1/(log(a//b)x) + 1/(log(b//c)x) + 1/(log(c//a) x)] is:

    Text Solution

    |

  3. If log(10)2 = 0.3010, then log(2) 10 is:

    Text Solution

    |

  4. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  5. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  6. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  7. If log(m+n) = log m + log n, then:

    Text Solution

    |

  8. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  9. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  10. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  11. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  12. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  13. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  14. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  15. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  16. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  17. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  18. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  19. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  20. log(2)7 is:

    Text Solution

    |