Home
Class 14
MATHS
If log 2 = 0.3010, the number of digits ...

If log 2 = 0.3010, the number of digits in `5^(20)` is:

A

16

B

14

C

8

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in \( 5^{20} \), we can use the formula for the number of digits \( d \) in a number \( n \), which is given by: \[ d = \lfloor \log_{10} n \rfloor + 1 \] In this case, \( n = 5^{20} \). Therefore, we need to calculate \( \log_{10} (5^{20}) \). ### Step 1: Calculate \( \log_{10} (5^{20}) \) Using the logarithmic identity \( \log_{10} (a^b) = b \cdot \log_{10} a \): \[ \log_{10} (5^{20}) = 20 \cdot \log_{10} 5 \] ### Step 2: Express \( \log_{10} 5 \) in terms of \( \log_{10} 2 \) We know that: \[ \log_{10} 5 = \log_{10} \left( \frac{10}{2} \right) = \log_{10} 10 - \log_{10} 2 \] Since \( \log_{10} 10 = 1 \) and we are given \( \log_{10} 2 = 0.3010 \): \[ \log_{10} 5 = 1 - \log_{10} 2 = 1 - 0.3010 = 0.6990 \] ### Step 3: Substitute \( \log_{10} 5 \) back into the equation Now we substitute \( \log_{10} 5 \) back into our equation for \( \log_{10} (5^{20}) \): \[ \log_{10} (5^{20}) = 20 \cdot 0.6990 = 13.980 \] ### Step 4: Calculate the number of digits Now we can calculate the number of digits \( d \): \[ d = \lfloor 13.980 \rfloor + 1 = 13 + 1 = 14 \] ### Conclusion Thus, the number of digits in \( 5^{20} \) is **14**. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log2=0.30103, then the number of digit in 5^(20) is a.14 b.16 c.18 d.25

If log2=0.30103 , then the number of digits in 4^(50) is

If log2=0.30103 , find the number of digits in 2^(56)

If log2=0.30103, find the number of digits in 2^(56).

If log2=0.30103, the number of digit is 2^(64) is a.18b.19c.20d.21

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0...

    Text Solution

    |

  2. If log 2=0.3010 and 5^x=400, then the value of x is :

    Text Solution

    |

  3. If log 2 = 0.3010, the number of digits in 5^(20) is:

    Text Solution

    |

  4. If log(m+n) = log m + log n, then:

    Text Solution

    |

  5. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  6. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  7. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  8. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  9. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  10. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  11. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  12. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  13. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  14. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  15. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  16. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  17. log(2)7 is:

    Text Solution

    |

  18. log(y)x=?

    Text Solution

    |

  19. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  20. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |