Home
Class 14
MATHS
if log(10)x = 1.9675, then the value of ...

if `log_(10)x = 1.9675`, then the value of `log_(10)(100x)` is:

A

196.75

B

3.9675

C

2.9675

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{10}(100x) \) given that \( \log_{10} x = 1.9675 \). ### Step-by-Step Solution: 1. **Use the property of logarithms**: We can break down \( \log_{10}(100x) \) using the property of logarithms that states \( \log_a(mn) = \log_a(m) + \log_a(n) \). \[ \log_{10}(100x) = \log_{10}(100) + \log_{10}(x) \] 2. **Calculate \( \log_{10}(100) \)**: Since \( 100 = 10^2 \), we can use the property \( \log_{10}(10^n) = n \). \[ \log_{10}(100) = \log_{10}(10^2) = 2 \] 3. **Substitute the known value of \( \log_{10}(x) \)**: We know from the problem statement that \( \log_{10}(x) = 1.9675 \). \[ \log_{10}(100x) = 2 + \log_{10}(x) = 2 + 1.9675 \] 4. **Perform the addition**: Now, we add the two values together. \[ 2 + 1.9675 = 3.9675 \] 5. **Final answer**: Therefore, the value of \( \log_{10}(100x) \) is \( 3.9675 \). ### Conclusion: The answer is \( \log_{10}(100x) = 3.9675 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If log_(100)x =-1/2 , then the value of x is:

If log_(2) log_(10)4x=1 , then the value of x is:

If x_(1) and x_(2) satisfy the equation x^(log_(10)x)=100x then the value of x_(1)x_(2) equals

log_(10){log10x}=1 then x

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If log_(10)x=a, find the values of 10^(a-1) in terms of x.

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. If log(10)a + log(10) b =c, then the value of a is:

    Text Solution

    |

  2. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  3. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  4. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  5. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  6. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  7. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  8. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  9. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  10. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  11. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  12. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  13. log(2)7 is:

    Text Solution

    |

  14. log(y)x=?

    Text Solution

    |

  15. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  16. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |

  17. log(10) a^(p).b^(q).c^( r)=?

    Text Solution

    |

  18. If a,b,c are in GP then log(10)a, log(10)b, log(10)c are in

    Text Solution

    |

  19. If log(10)x, log(10)y, log(10)z are in AP, then x,y,z are in:

    Text Solution

    |

  20. If a,b,c are in GP then 1/(log(a)x), 1/(log(b)x), 1/(log( c)x) are in:

    Text Solution

    |