Home
Class 14
MATHS
If 5^(x) = (0.5)^(y) = 1000, then the va...

If `5^(x) = (0.5)^(y) = 1000`, then the value of `(1/x - 1/y)` is:

A

`1/4`

B

`1/3`

C

`1/2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 5^x = (0.5)^y = 1000 \) and find the value of \( \left( \frac{1}{x} - \frac{1}{y} \right) \), we can follow these steps: ### Step 1: Find \( x \) from \( 5^x = 1000 \) We start with the equation: \[ 5^x = 1000 \] Taking logarithm on both sides: \[ \log(5^x) = \log(1000) \] Using the logarithmic identity \( \log(a^b) = b \cdot \log(a) \): \[ x \cdot \log(5) = \log(1000) \] Now, we can express \( x \): \[ x = \frac{\log(1000)}{\log(5)} \] ### Step 2: Find \( y \) from \( (0.5)^y = 1000 \) Next, we consider the second part of the equation: \[ (0.5)^y = 1000 \] Taking logarithm on both sides: \[ \log((0.5)^y) = \log(1000) \] Again using the logarithmic identity: \[ y \cdot \log(0.5) = \log(1000) \] Now, we can express \( y \): \[ y = \frac{\log(1000)}{\log(0.5)} \] ### Step 3: Calculate \( \frac{1}{x} \) and \( \frac{1}{y} \) Now, we need to find \( \frac{1}{x} \) and \( \frac{1}{y} \): \[ \frac{1}{x} = \frac{\log(5)}{\log(1000)} \] \[ \frac{1}{y} = \frac{\log(0.5)}{\log(1000)} \] ### Step 4: Find \( \frac{1}{x} - \frac{1}{y} \) Now, we can find \( \frac{1}{x} - \frac{1}{y} \): \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(5)}{\log(1000)} - \frac{\log(0.5)}{\log(1000)} \] Combining the fractions: \[ = \frac{\log(5) - \log(0.5)}{\log(1000)} \] Using the property of logarithms \( \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \): \[ = \frac{\log\left(\frac{5}{0.5}\right)}{\log(1000)} \] Calculating \( \frac{5}{0.5} \): \[ \frac{5}{0.5} = 10 \] Thus: \[ = \frac{\log(10)}{\log(1000)} \] ### Step 5: Simplify \( \log(1000) \) We know that \( 1000 = 10^3 \), so: \[ \log(1000) = 3 \cdot \log(10) = 3 \] Therefore: \[ \frac{1}{x} - \frac{1}{y} = \frac{\log(10)}{3} \] Since \( \log(10) = 1 \): \[ = \frac{1}{3} \] ### Final Answer Thus, the value of \( \left( \frac{1}{x} - \frac{1}{y} \right) \) is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If (4.8)^(x)=(0.48)^(y)=1,000 then the value of (1)/(x)-(1)/(y) is

If (4.8)^(x)=(0.48)^(y)=1,000 then the value of (1)/(x)-(1)/(y) is

If (2.5)^(x)=(0.025)^(y)=10^(3) , then the value of (1)/(x)-(1)/(y) is

If 1.5x=0.04y, then the value of (y-x)/(y+x)

If 5^(x)=(0.5)^(y)=1000,then(1)/(x)-(1)/(y)=

"If "(0.05)^(x)=(0.005)^(y)=1000 then (1)/(x)-(1)/(y)=

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. The mantissa of log 3274 is 0.5150. The value of log(0.3274) is:

    Text Solution

    |

  2. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  3. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  4. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  5. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  6. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  7. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  8. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  9. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  10. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  11. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  12. log(2)7 is:

    Text Solution

    |

  13. log(y)x=?

    Text Solution

    |

  14. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  15. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |

  16. log(10) a^(p).b^(q).c^( r)=?

    Text Solution

    |

  17. If a,b,c are in GP then log(10)a, log(10)b, log(10)c are in

    Text Solution

    |

  18. If log(10)x, log(10)y, log(10)z are in AP, then x,y,z are in:

    Text Solution

    |

  19. If a,b,c are in GP then 1/(log(a)x), 1/(log(b)x), 1/(log( c)x) are in:

    Text Solution

    |

  20. if log(x-1) + log(x+1) = 3 log2, then x is equal to:

    Text Solution

    |