Home
Class 14
MATHS
The value of (2^(log3^(7) - 7^(log (3)2)...

The value of `(2^(log3^(7) - 7^(log _(3)2)))` is

A

0

B

1

C

`log_(7)5`

D

`log_(7)6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2^{(\log_3 7 - 7^{(\log_3 2)})} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 2^{(\log_3 7 - 7^{(\log_3 2)})} \] ### Step 2: Apply the logarithmic identity Using the property of logarithms, we know that: \[ a^{\log_b c} = c^{\log_b a} \] We can rewrite \( 7^{(\log_3 2)} \) as: \[ 7^{(\log_3 2)} = 2^{(\log_3 7)} \] Thus, we can rewrite our expression as: \[ 2^{(\log_3 7 - 2^{(\log_3 7)})} \] ### Step 3: Simplify the expression Now, we have: \[ \log_3 7 - 2^{(\log_3 7)} \] This means we have: \[ \log_3 7 - \log_3 7 = 0 \] So, the expression simplifies to: \[ 2^0 \] ### Step 4: Final calculation Since \( 2^0 = 1 \), we conclude that: \[ 2^{(\log_3 7 - 7^{(\log_3 2)})} = 1 \] ### Conclusion The value of \( 2^{(\log_3 7 - 7^{(\log_3 2)})} \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Find the value of (7^(3))^(-2log_(7)8)

The value of (((log)_(2)9)^(2))^((log)_(2)((log)2^(9)))xx(sqrt(7))^((1)/((log)_(4)7)) is

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9))) xx (sqrt(7))1/(log_(4)7) is ....................

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  2. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  3. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  4. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  5. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  6. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  7. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  8. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  9. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  10. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  11. log(2)7 is:

    Text Solution

    |

  12. log(y)x=?

    Text Solution

    |

  13. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  14. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |

  15. log(10) a^(p).b^(q).c^( r)=?

    Text Solution

    |

  16. If a,b,c are in GP then log(10)a, log(10)b, log(10)c are in

    Text Solution

    |

  17. If log(10)x, log(10)y, log(10)z are in AP, then x,y,z are in:

    Text Solution

    |

  18. If a,b,c are in GP then 1/(log(a)x), 1/(log(b)x), 1/(log( c)x) are in:

    Text Solution

    |

  19. if log(x-1) + log(x+1) = 3 log2, then x is equal to:

    Text Solution

    |

  20. If a,b,c are three consecutive integers, then log(ac+1) has the value:

    Text Solution

    |