Home
Class 14
MATHS
1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+...

`1/(log_(2)a) + 1/(log_(4)a) + 1/(log_(8)a)`+….. To n terms `=(n(n+1))/k`, then k is equal to:

A

`log_(2)a^(2)`

B

`log_(2)(a/2)`

C

`log_(a)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{\log_{2} a} + \frac{1}{\log_{4} a} + \frac{1}{\log_{8} a} + \ldots \) up to \( n \) terms, we can follow these steps: ### Step 1: Rewrite the logarithms We can use the change of base formula for logarithms, which states that \( \log_{b} a = \frac{1}{\log_{a} b} \). Therefore, we can rewrite each term: \[ \frac{1}{\log_{2} a} = \log_{a} 2, \quad \frac{1}{\log_{4} a} = \log_{a} 4, \quad \frac{1}{\log_{8} a} = \log_{a} 8 \] Thus, the expression becomes: \[ \log_{a} 2 + \log_{a} 4 + \log_{a} 8 + \ldots \] ### Step 2: Express the logarithms in terms of powers of 2 We can express \( 4 \) and \( 8 \) as powers of \( 2 \): \[ \log_{a} 4 = \log_{a} (2^2) = 2 \log_{a} 2, \quad \log_{a} 8 = \log_{a} (2^3) = 3 \log_{a} 2 \] Continuing this way, we can express the \( k \)-th term as: \[ \log_{a} (2^k) = k \log_{a} 2 \] ### Step 3: Sum the series The series now becomes: \[ \log_{a} 2 \left( 1 + 2 + 3 + \ldots + n \right) \] The sum \( 1 + 2 + 3 + \ldots + n \) can be calculated using the formula for the sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Thus, we have: \[ \log_{a} 2 \cdot \frac{n(n+1)}{2} \] ### Step 4: Final expression Now, substituting this back, we get: \[ \frac{n(n+1)}{2} \log_{a} 2 \] ### Step 5: Relate to the given equation According to the problem, this expression is equal to \( \frac{n(n+1)}{k} \). Therefore, we can set: \[ \frac{n(n+1)}{2} \log_{a} 2 = \frac{n(n+1)}{k} \] ### Step 6: Solve for \( k \) By comparing both sides, we can find \( k \): \[ k = 2 \log_{a} 2 \] ### Step 7: Express \( k \) in terms of logarithm base 2 Using the change of base formula again, we can express \( \log_{a} 2 \) as: \[ \log_{a} 2 = \frac{1}{\log_{2} a} \] Thus, \[ k = 2 \cdot \frac{1}{\log_{2} a} = \frac{2}{\log_{2} a} \] ### Conclusion So, the value of \( k \) is: \[ k = \log_{2} a^2 \] ### Final Answer Thus, \( k \) is equal to \( \log_{2} a^2 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

1/(log_2 a)+1/(log_4 a)+1/(log_8 a)+... up to n terms = (n(n+1))/k then k=

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

What is (1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(log_(4)N)+....+(1)/(log_(100)N) " equal to "(Nne1) ?

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  2. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  3. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  4. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  5. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  6. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  7. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  8. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  9. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  10. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  11. log(2)7 is:

    Text Solution

    |

  12. log(y)x=?

    Text Solution

    |

  13. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  14. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |

  15. log(10) a^(p).b^(q).c^( r)=?

    Text Solution

    |

  16. If a,b,c are in GP then log(10)a, log(10)b, log(10)c are in

    Text Solution

    |

  17. If log(10)x, log(10)y, log(10)z are in AP, then x,y,z are in:

    Text Solution

    |

  18. If a,b,c are in GP then 1/(log(a)x), 1/(log(b)x), 1/(log( c)x) are in:

    Text Solution

    |

  19. if log(x-1) + log(x+1) = 3 log2, then x is equal to:

    Text Solution

    |

  20. If a,b,c are three consecutive integers, then log(ac+1) has the value:

    Text Solution

    |