Home
Class 14
MATHS
If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =...

If `(x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2)`, then the value of a is:

A

`(x^(2) - y^(2))`

B

`(x-y)/(x+y)`

C

`(log (x+y))/(log(x-y))`

D

`(log(x-y))/(log(x+y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x^{4} - 2x^{2}y^{2} + y^{4})^{(a-1)} = (x-y)^{2a} (x+y)^{-2}\), we will first simplify the left-hand side and then equate the exponents. ### Step 1: Simplify the left-hand side The expression \(x^{4} - 2x^{2}y^{2} + y^{4}\) can be recognized as a perfect square. It can be factored as: \[ x^{4} - 2x^{2}y^{2} + y^{4} = (x^{2} - y^{2})^{2} \] Thus, we can rewrite the left-hand side: \[ (x^{4} - 2x^{2}y^{2} + y^{4})^{(a-1)} = ((x^{2} - y^{2})^{2})^{(a-1)} = (x^{2} - y^{2})^{2(a-1)} \] ### Step 2: Rewrite the right-hand side The right-hand side is already in a suitable form: \[ (x-y)^{2a} (x+y)^{-2} \] ### Step 3: Express \(x^{2} - y^{2}\) in terms of \(x-y\) and \(x+y\) Recall the identity: \[ x^{2} - y^{2} = (x-y)(x+y) \] Thus, we can express \((x^{2} - y^{2})^{2(a-1)}\) as: \[ ((x-y)(x+y))^{2(a-1)} = (x-y)^{2(a-1)}(x+y)^{2(a-1)} \] ### Step 4: Equate the two sides Now we have: \[ (x-y)^{2(a-1)}(x+y)^{2(a-1)} = (x-y)^{2a}(x+y)^{-2} \] We can equate the coefficients of \((x-y)\) and \((x+y)\) on both sides. ### Step 5: Equate the powers of \((x-y)\) From \((x-y)\): \[ 2(a-1) = 2a \implies 2a - 2 = 2a \implies -2 = 0 \] This equation does not provide any new information. ### Step 6: Equate the powers of \((x+y)\) From \((x+y)\): \[ 2(a-1) = -2 \implies 2a - 2 = -2 \implies 2a = 0 \implies a = 0 \] ### Conclusion Thus, the value of \(a\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 1|50 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

If x^(4) +x^(2)y^(2)+y^(4)=21 , and x^(2)+xy+y^(2)=3 then what is the value of 4xy?

If x^(4) + x^(2) y^(2) + y^(4) = 91 and x^(2) - xy + y^(2) = 13 , then what is the value of | x-y|?

If 5x^(2) -4xy +y^(2) -2x +1=0 then value of x+y is

x"@"y=(x+y)^(2) x#y=(x-y)^(2) Find the value of (20"@"4)#35:

if x^(2)+y^(2)+(1)/(x^(2))+(1)/(y^(2))=4 then find the value of x^(2)+y^(2)

If x,y are real and (x-1)^(2)+(y-4)^(2)=0 then the value of x^(3)+y^(3) is

ARIHANT SSC-LOGARITHM -INTRODUCTORY EXERCISE- 16.1
  1. if log(10)x = 1.9675, then the value of log(10)(100x) is:

    Text Solution

    |

  2. If 5^(x) = (0.5)^(y) = 1000, then the value of (1/x - 1/y) is:

    Text Solution

    |

  3. If 1/2 log x + 1/2 log y + log2 = log(x+y), then:

    Text Solution

    |

  4. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  5. If x^(2) + 4y^(2) =12 xy, then log (x+2y) is equal to

    Text Solution

    |

  6. The value of (2^(log3^(7) - 7^(log (3)2))) is

    Text Solution

    |

  7. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  8. The value of (log tan 1^(@) + log tan 2^(@)+……. + log tan 89^(@)) is

    Text Solution

    |

  9. The value of x for which log(9)x - log(9) (x/10 + 1/9) is:

    Text Solution

    |

  10. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  11. log(2)7 is:

    Text Solution

    |

  12. log(y)x=?

    Text Solution

    |

  13. The value of log(10)2 + 16 log(10)(16/15) + 12 log(10)(25/24) + 7 log(...

    Text Solution

    |

  14. if log(10)x=a, log(10)y=b and log(10)z=c, then antilog (pa + qb - rc)=...

    Text Solution

    |

  15. log(10) a^(p).b^(q).c^( r)=?

    Text Solution

    |

  16. If a,b,c are in GP then log(10)a, log(10)b, log(10)c are in

    Text Solution

    |

  17. If log(10)x, log(10)y, log(10)z are in AP, then x,y,z are in:

    Text Solution

    |

  18. If a,b,c are in GP then 1/(log(a)x), 1/(log(b)x), 1/(log( c)x) are in:

    Text Solution

    |

  19. if log(x-1) + log(x+1) = 3 log2, then x is equal to:

    Text Solution

    |

  20. If a,b,c are three consecutive integers, then log(ac+1) has the value:

    Text Solution

    |