Home
Class 14
MATHS
The value of (log(3)54)/(log(486)3) - (l...

The value of `(log_(3)54)/(log_(486)3) - (log_(3)1458)/(log_(18)3)` is:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\log_{3}54}{\log_{486}3} - \frac{\log_{3}1458}{\log_{18}3}\), we can use the change of base formula for logarithms, which states that \(\log_{b}a = \frac{\log_{k}a}{\log_{k}b}\) for any positive \(k\). ### Step 1: Apply the Change of Base Formula Using the change of base formula, we can rewrite the logarithms in the denominators: \[ \log_{486}3 = \frac{\log_{3}3}{\log_{3}486} = \frac{1}{\log_{3}486} \] \[ \log_{18}3 = \frac{\log_{3}3}{\log_{3}18} = \frac{1}{\log_{3}18} \] ### Step 2: Substitute Back into the Expression Now substitute these back into the original expression: \[ \frac{\log_{3}54}{\frac{1}{\log_{3}486}} - \frac{\log_{3}1458}{\frac{1}{\log_{3}18}} = \log_{3}54 \cdot \log_{3}486 - \log_{3}1458 \cdot \log_{3}18 \] ### Step 3: Simplify Each Term Next, we can simplify each logarithm using the properties of logarithms. 1. **For \(\log_{3}54\)**: \[ 54 = 2 \cdot 3^3 \implies \log_{3}54 = \log_{3}(2) + 3 \] 2. **For \(\log_{3}1458\)**: \[ 1458 = 2 \cdot 3^6 \implies \log_{3}1458 = \log_{3}(2) + 6 \] 3. **For \(\log_{3}486\)**: \[ 486 = 2 \cdot 3^5 \implies \log_{3}486 = \log_{3}(2) + 5 \] 4. **For \(\log_{3}18\)**: \[ 18 = 2 \cdot 3^2 \implies \log_{3}18 = \log_{3}(2) + 2 \] ### Step 4: Substitute Simplified Values Now substitute these values back into the expression: \[ (\log_{3}(2) + 3)(\log_{3}(2) + 5) - (\log_{3}(2) + 6)(\log_{3}(2) + 2) \] ### Step 5: Expand Both Products Now we expand both products: 1. **First Product**: \[ (\log_{3}(2) + 3)(\log_{3}(2) + 5) = \log_{3}(2)^2 + 8\log_{3}(2) + 15 \] 2. **Second Product**: \[ (\log_{3}(2) + 6)(\log_{3}(2) + 2) = \log_{3}(2)^2 + 8\log_{3}(2) + 12 \] ### Step 6: Combine the Results Now combine the results: \[ (\log_{3}(2)^2 + 8\log_{3}(2) + 15) - (\log_{3}(2)^2 + 8\log_{3}(2) + 12) = 15 - 12 = 3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

(log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)

Evaluate (log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)

The value of (log_(3)8)/(log_(9)16log_(4)10)

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

let N=((log_(3)135)/(log_(15)3))-((log_(3)5)/(log_(405)3))

Find the value of (log_(3)12)(log_(3)72)-log_(3)(192)*log_(36)

7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

ARIHANT SSC-LOGARITHM -EXERCISE LEVEL 1
  1. If log(2)(x+y) =3 and log(2)x + log(2)y =2 + log(z)3 then the values o...

    Text Solution

    |

  2. The set of all the solution of the equation log(5)x log(6)x log(7)x ...

    Text Solution

    |

  3. The value of (log(3)54)/(log(486)3) - (log(3)1458)/(log(18)3) is:

    Text Solution

    |

  4. The number of solution of log(9)(2x-5) = log(3) (x-4) is:

    Text Solution

    |

  5. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  6. If 1 , logy , x , logz , y , -15 logx z are in A.P. , then which is co...

    Text Solution

    |

  7. If log(x)a,a^(x//2) and log(a)x are in G.P, then x is equal to:

    Text Solution

    |

  8. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  9. The value of 1/(log(100)n) + 1/(log(99)n) + 1/(log(98)n) +……..+1/(log(...

    Text Solution

    |

  10. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  11. x^(log (5)x) gt 5 implies:

    Text Solution

    |

  12. Find x, if log x^(3) - log 3x =2 log 2 + log 3,

    Text Solution

    |

  13. If x satisfies log(S)(2x+3) lt log(s)7, then x lies in:

    Text Solution

    |

  14. log(2)sqrt(x)+log(2)sqrt(x)=4

    Text Solution

    |

  15. For a positive real x(x gt 1), which one of the following correct?

    Text Solution

    |

  16. For x in N, x gt 1, if P=log(x)(x+1) and Q = log(x+1) (x+2) then which...

    Text Solution

    |

  17. If a= 1+ log(x) yz, b=1 + log(y)zx and c=1 +log(z)xy, the ab+bc +ca is...

    Text Solution

    |

  18. If xy^(2) = 4 and log(3) (log(2) x) + log(1//3) (log(1//2) y)=1 , then...

    Text Solution

    |

  19. Find x if log(1//sqrt(2)) (1//sqrt(8)) = log(2)(4^(x) +1). Log(4^(x+1)...

    Text Solution

    |

  20. The value of x satisfying log(3)4 -2 log(3)sqrt(3x +1) =1 - log(3)(5...

    Text Solution

    |