Home
Class 14
MATHS
x^(log (5)x) gt 5 implies:...

`x^(log _(5)x) gt 5` implies:

A

`x in (0, infty)`

B

`x in (1, infty)`

C

`x in (1,2)`

D

`x in (0,1//5) cup (5, infty)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^{\log_5 x} > 5 \), we will follow these steps: ### Step 1: Rewrite the inequality using logarithms We start with the given inequality: \[ x^{\log_5 x} > 5 \] Taking the logarithm base 5 of both sides, we get: \[ \log_5 (x^{\log_5 x}) > \log_5 5 \] Since \( \log_5 5 = 1 \), the inequality simplifies to: \[ \log_5 x \cdot \log_5 x > 1 \] This can be rewritten as: \[ (\log_5 x)^2 > 1 \] ### Step 2: Solve the quadratic inequality The inequality \( (\log_5 x)^2 > 1 \) implies: \[ \log_5 x > 1 \quad \text{or} \quad \log_5 x < -1 \] ### Step 3: Convert back to exponential form 1. For \( \log_5 x > 1 \): \[ x > 5^1 \implies x > 5 \] 2. For \( \log_5 x < -1 \): \[ x < 5^{-1} \implies x < \frac{1}{5} \] ### Step 4: Combine the results The solution to the inequality \( x^{\log_5 x} > 5 \) is: \[ x < \frac{1}{5} \quad \text{or} \quad x > 5 \] ### Final Answer Thus, the solution set is: \[ (0, \frac{1}{5}) \cup (5, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    ARIHANT SSC|Exercise EXERCISE LEVEL 2|19 Videos
  • LOGARITHM

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE- 16.1|66 Videos
  • LINEAR EQUATIONS

    ARIHANT SSC|Exercise Higher Skill Level Questions|7 Videos
  • MENSURATION

    ARIHANT SSC|Exercise TEST OF YOUR LEARNING|18 Videos

Similar Questions

Explore conceptually related problems

x^(log_(5)x)>5 implies x in

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

x^(log_(5^(x))) gt 5 then x may belongs to

If a gt 1, x gt 0 and 2^(log_(a)(2x))=5^(log_(a)(5x)) , then x is equal to

The solution of the equation 5^(log_(a)x)+5x^(log_(a)5)=3, a gt0 , is

ARIHANT SSC-LOGARITHM -EXERCISE LEVEL 1
  1. The value of (log(3)54)/(log(486)3) - (log(3)1458)/(log(18)3) is:

    Text Solution

    |

  2. The number of solution of log(9)(2x-5) = log(3) (x-4) is:

    Text Solution

    |

  3. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  4. If 1 , logy , x , logz , y , -15 logx z are in A.P. , then which is co...

    Text Solution

    |

  5. If log(x)a,a^(x//2) and log(a)x are in G.P, then x is equal to:

    Text Solution

    |

  6. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  7. The value of 1/(log(100)n) + 1/(log(99)n) + 1/(log(98)n) +……..+1/(log(...

    Text Solution

    |

  8. If log(3)2, log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in AP then x is...

    Text Solution

    |

  9. x^(log (5)x) gt 5 implies:

    Text Solution

    |

  10. Find x, if log x^(3) - log 3x =2 log 2 + log 3,

    Text Solution

    |

  11. If x satisfies log(S)(2x+3) lt log(s)7, then x lies in:

    Text Solution

    |

  12. log(2)sqrt(x)+log(2)sqrt(x)=4

    Text Solution

    |

  13. For a positive real x(x gt 1), which one of the following correct?

    Text Solution

    |

  14. For x in N, x gt 1, if P=log(x)(x+1) and Q = log(x+1) (x+2) then which...

    Text Solution

    |

  15. If a= 1+ log(x) yz, b=1 + log(y)zx and c=1 +log(z)xy, the ab+bc +ca is...

    Text Solution

    |

  16. If xy^(2) = 4 and log(3) (log(2) x) + log(1//3) (log(1//2) y)=1 , then...

    Text Solution

    |

  17. Find x if log(1//sqrt(2)) (1//sqrt(8)) = log(2)(4^(x) +1). Log(4^(x+1)...

    Text Solution

    |

  18. The value of x satisfying log(3)4 -2 log(3)sqrt(3x +1) =1 - log(3)(5...

    Text Solution

    |

  19. The solution set of |3-4x| gt 2 is:

    Text Solution

    |

  20. Solve the following equation for x and y log(100)|x+y| = 1/2, log(10...

    Text Solution

    |