Home
Class 12
MATHS
If f(x) = (1)/(sqrt( (x+1) (e^(x) - 1)(x...

If `f(x) = (1)/(sqrt( (x+1) (e^(x) - 1)(x-4)(x +5)(x -6)))`, then the domain of `f(x)` is

A

`(infty, -5), cup (-1,4), cup (6, infty)`

B

`(- infty, - 5) cup (- 1, 0) cup (0,4) cup (6, infty)`

C

`( - 5, -1) cup ( 0, 4) cup (6 , infty)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{(x+1)(e^x - 1)(x-4)(x+5)(x-6)}} \), we need to ensure that the expression inside the square root is positive and not equal to zero, since it is in the denominator. ### Step-by-step Solution: 1. **Identify the expression inside the square root:** \[ (x+1)(e^x - 1)(x-4)(x+5)(x-6) \] 2. **Determine when each factor is zero:** - \( x + 1 = 0 \) gives \( x = -1 \) - \( e^x - 1 = 0 \) gives \( x = 0 \) - \( x - 4 = 0 \) gives \( x = 4 \) - \( x + 5 = 0 \) gives \( x = -5 \) - \( x - 6 = 0 \) gives \( x = 6 \) The critical points are \( x = -5, -1, 0, 4, 6 \). 3. **Analyze the intervals defined by these critical points:** The critical points divide the number line into the following intervals: - \( (-\infty, -5) \) - \( (-5, -1) \) - \( (-1, 0) \) - \( (0, 4) \) - \( (4, 6) \) - \( (6, \infty) \) 4. **Test each interval to determine where the product is positive:** - For \( x < -5 \) (e.g., \( x = -6 \)): \[ (-)(-)(-)(-)(-) = - \quad \text{(Negative)} \] - For \( -5 < x < -1 \) (e.g., \( x = -3 \)): \[ (+)(-)(-)(+)(-) = + \quad \text{(Positive)} \] - For \( -1 < x < 0 \) (e.g., \( x = -0.5 \)): \[ (+)(-)(-)(+)(-) = + \quad \text{(Positive)} \] - For \( 0 < x < 4 \) (e.g., \( x = 1 \)): \[ (+)(+)(-)(+)(-) = - \quad \text{(Negative)} \] - For \( 4 < x < 6 \) (e.g., \( x = 5 \)): \[ (+)(+)(+)(+)(-) = - \quad \text{(Negative)} \] - For \( x > 6 \) (e.g., \( x = 7 \)): \[ (+)(+)(+)(+)(+) = + \quad \text{(Positive)} \] 5. **Combine the intervals where the product is positive:** The intervals where the expression is positive are: - From \( (-5, -1) \) - From \( (-1, 0) \) - From \( (6, \infty) \) 6. **Write the domain of \( f(x) \):** Therefore, the domain of \( f(x) \) is: \[ (-5, -1) \cup (-1, 0) \cup (6, \infty) \] ### Final Answer: The domain of \( f(x) \) is \( (-5, -1) \cup (-1, 0) \cup (6, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2|30 Videos
  • RELATIONS AND FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2|30 Videos
  • PROBABILITY-1

    DISHA PUBLICATION|Exercise EXERCISE-1 : CONCEPT BUILDER|180 Videos
  • RELATIONS AND FUNCTIONS-2

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin log((sqrt(4-x^(2)))/(1-x)) , then the domain of f(x) is ….

Find the domain of f(x) = sqrt(x-1) .

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

If f(x)=sqrt(4-x^(2))+(1)/(sqrt((|sin x|)-sin x)) then the domain of f(x) is

If f(x)=sin log_(e){(sqrt(4-x^(2)))/(1-x)}, then the domain of f(x) is and its range is

If f(x) =sqrt(4-x^(2)) +1/(sqrt(abs(sinx)-sinx)) , then the-domain of f(x) is

If (f(x))/(g(x))=h(x) where g(x)=sqrt(1-|(x^(2))/(x-1)|) and h(x)=(1)/(sqrt(|x-1|-[x])) then the domain of f(x)

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

DISHA PUBLICATION-RELATIONS AND FUNCTIONS -EXERCISE - 1
  1. The domain of definition of the function y=(1)/(log(10)(1-x))+sqrt(x...

    Text Solution

    |

  2. Let f = {(1, 1),(2,3),(0,-1), (-1,-3)} be a linear function from Z int...

    Text Solution

    |

  3. If f(x) = (1)/(sqrt( (x+1) (e^(x) - 1)(x-4)(x +5)(x -6))), then the do...

    Text Solution

    |

  4. If f and g are two functions defined as f (x) = x + 2, x le 0 , g (x)...

    Text Solution

    |

  5. If f(x+1)=x^(2)-3x+2 then f(x) is equal to

    Text Solution

    |

  6. f(x) = (x (x-p))/(q - p) + (x (x - q))/(p - q) , pneq. What is the val...

    Text Solution

    |

  7. If [x]^2-5[x]+6=0, where [.] denotes the greatest integer function, th...

    Text Solution

    |

  8. The domain of the function f(x) =(1)/(sqrt(|x|-x)), is

    Text Solution

    |

  9. If f(x)=xandg(x)=|x|, then what is (f+g)(x) equal to ?

    Text Solution

    |

  10. If f(x) = e^(-x), then (f (-a))/(f(b)) is equal to

    Text Solution

    |

  11. If P={x in R : f(x)=0} and Q={x in R : g(x)=0 }, then PuuQ is

    Text Solution

    |

  12. The domain of the function f(x) = (|x + 3|)/(x + 3) is

    Text Solution

    |

  13. let f(x)=sqrt(1+x^2) then

    Text Solution

    |

  14. The function f(x)=log(10)((1+x)/(1-x)) satisfies the equation

    Text Solution

    |

  15. If f (x + y) = f(x) + 2y^(2) + kxy and f(a) = 2, f(b) = 8, then f(x) ...

    Text Solution

    |

  16. Let f1(x)={x, x leq x leq 1 and 1 x gt1 and 0,otherwise f2(x) =f1 (...

    Text Solution

    |

  17. The domain of the function f(x) =(1)/(sqrt(|x|-x)), is

    Text Solution

    |

  18. Let f(x) = (alpha x^(2))/(x + 1), x ne - 1 , The value of alpha for wh...

    Text Solution

    |

  19. The domain of the function f(x) = exp ( sqrt(5x - 3 - 2x^(2))) is

    Text Solution

    |

  20. If f : R rarr R be defined as f(x) = 2x + |x|, then f(2x) + f(-x) - f...

    Text Solution

    |