Home
Class 12
MATHS
Let f(x) be defined on [-2,2] and is giv...

Let f(x) be defined on [-2,2] and is given by
f(x) = `{{:(x+1, - 2le x le 0 ),(x - 1, 0 le x le 2):}`, then f (|x|) is defined as

A

f (|x|) = `{{:(-1, - 2le x le 0 ),(x - 1, 0 le x le 2):}`

B

f(|x|) = x -1 `forall x in `R

C

` f (|x|) = {{:(-x -1, - 2le x le 0 ),(x - 1, 0 le x le 2):}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the function \( f(|x|) \) based on the given piecewise function \( f(x) \). The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} x + 1 & \text{if } -2 \leq x \leq 0 \\ x - 1 & \text{if } 0 < x \leq 2 \end{cases} \] ### Step 1: Determine the range of \( |x| \) The absolute value function \( |x| \) takes non-negative values. Therefore, we need to consider the intervals for \( |x| \): - When \( x \) is in the range \( [-2, 0] \), \( |x| \) will range from \( 0 \) to \( 2 \). - When \( x \) is in the range \( [0, 2] \), \( |x| \) will also range from \( 0 \) to \( 2 \). Thus, \( |x| \) will take values in the interval \( [0, 2] \). ### Step 2: Evaluate \( f(|x|) \) Now we can evaluate \( f(|x|) \) based on the definition of \( f(x) \): 1. **For \( |x| \) in the interval \( [0, 2] \)**: - If \( |x| = 0 \), then we use the first case of \( f(x) \): \[ f(0) = 0 + 1 = 1 \] - If \( |x| \) is in the interval \( (0, 2] \), we use the second case of \( f(x) \): \[ f(|x|) = |x| - 1 \] ### Step 3: Combine the results Thus, we can write the function \( f(|x|) \) as: \[ f(|x|) = \begin{cases} 1 & \text{if } |x| = 0 \\ |x| - 1 & \text{if } 0 < |x| \leq 2 \end{cases} \] ### Final Function Representation To summarize, the function \( f(|x|) \) can be expressed as: \[ f(|x|) = \begin{cases} 1 & \text{if } |x| = 0 \\ |x| - 1 & \text{if } 0 < |x| \leq 2 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2|30 Videos
  • RELATIONS AND FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2|30 Videos
  • PROBABILITY-1

    DISHA PUBLICATION|Exercise EXERCISE-1 : CONCEPT BUILDER|180 Videos
  • RELATIONS AND FUNCTIONS-2

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be defined on [-2,2] and is given by f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le 2):} and g(x) =f(|x|)+|f(x)| . Then g(x) is equal to

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x) be defined on [-2,2[ such that f(x)={{:(,-1,-2 le x le 0),(,x-1,0 le x le 2):} and g(x)= f(|x|)+|f(x)| . Then g(x) is differentiable in the interval.

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

DISHA PUBLICATION-RELATIONS AND FUNCTIONS -EXERCISE - 1
  1. If f(x+1)=x^(2)-3x+2 then f(x) is equal to

    Text Solution

    |

  2. f(x) = (x (x-p))/(q - p) + (x (x - q))/(p - q) , pneq. What is the val...

    Text Solution

    |

  3. If [x]^2-5[x]+6=0, where [.] denotes the greatest integer function, th...

    Text Solution

    |

  4. The domain of the function f(x) =(1)/(sqrt(|x|-x)), is

    Text Solution

    |

  5. If f(x)=xandg(x)=|x|, then what is (f+g)(x) equal to ?

    Text Solution

    |

  6. If f(x) = e^(-x), then (f (-a))/(f(b)) is equal to

    Text Solution

    |

  7. If P={x in R : f(x)=0} and Q={x in R : g(x)=0 }, then PuuQ is

    Text Solution

    |

  8. The domain of the function f(x) = (|x + 3|)/(x + 3) is

    Text Solution

    |

  9. let f(x)=sqrt(1+x^2) then

    Text Solution

    |

  10. The function f(x)=log(10)((1+x)/(1-x)) satisfies the equation

    Text Solution

    |

  11. If f (x + y) = f(x) + 2y^(2) + kxy and f(a) = 2, f(b) = 8, then f(x) ...

    Text Solution

    |

  12. Let f1(x)={x, x leq x leq 1 and 1 x gt1 and 0,otherwise f2(x) =f1 (...

    Text Solution

    |

  13. The domain of the function f(x) =(1)/(sqrt(|x|-x)), is

    Text Solution

    |

  14. Let f(x) = (alpha x^(2))/(x + 1), x ne - 1 , The value of alpha for wh...

    Text Solution

    |

  15. The domain of the function f(x) = exp ( sqrt(5x - 3 - 2x^(2))) is

    Text Solution

    |

  16. If f : R rarr R be defined as f(x) = 2x + |x|, then f(2x) + f(-x) - f...

    Text Solution

    |

  17. Domain of definition of the functioni f(x)=3/(4-x^(2))+log(10)(x^(3)-x...

    Text Solution

    |

  18. Which of the following is wrong ?

    Text Solution

    |

  19. Let f(x) be defined on [-2,2] and is given by f(x) = {{:(x+1, - 2l...

    Text Solution

    |

  20. The domain for which the functions defined by f(x)=3x^(2)-1 and g(x)...

    Text Solution

    |