Home
Class 12
MATHS
The parametric equations of the circle x...

The parametric equations of the circle `x^(2) + y^(2) + mx + my = 0` are

A

`x=-m/2+m/sqrt2cos theta , y=m/2+m/sqrt2sin theta`

B

`x=-m/2+m/sqrt2cos theta , y=-m/2+m/sqrt2sin theta`

C

x = 0 , y = 0

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric equations of the circle given by the equation \(x^2 + y^2 + mx + my = 0\), we will follow these steps: ### Step 1: Rewrite the Circle Equation We start with the equation: \[ x^2 + y^2 + mx + my = 0 \] We can rearrange this to group the \(x\) and \(y\) terms: \[ x^2 + mx + y^2 + my = 0 \] ### Step 2: Complete the Square Next, we will complete the square for both \(x\) and \(y\). For \(x\): \[ x^2 + mx = \left(x + \frac{m}{2}\right)^2 - \frac{m^2}{4} \] For \(y\): \[ y^2 + my = \left(y + \frac{m}{2}\right)^2 - \frac{m^2}{4} \] Putting these back into the equation gives: \[ \left(x + \frac{m}{2}\right)^2 - \frac{m^2}{4} + \left(y + \frac{m}{2}\right)^2 - \frac{m^2}{4} = 0 \] ### Step 3: Simplify the Equation Combining the terms, we have: \[ \left(x + \frac{m}{2}\right)^2 + \left(y + \frac{m}{2}\right)^2 = \frac{m^2}{2} \] ### Step 4: Identify the Center and Radius From the equation \(\left(x + \frac{m}{2}\right)^2 + \left(y + \frac{m}{2}\right)^2 = \frac{m^2}{2}\), we can identify: - The center of the circle is at \(\left(-\frac{m}{2}, -\frac{m}{2}\right)\) - The radius \(r\) is \(\sqrt{\frac{m^2}{2}} = \frac{m}{\sqrt{2}}\) ### Step 5: Write the Parametric Equations The parametric equations for a circle centered at \((h, k)\) with radius \(r\) are given by: \[ x = h + r \cos \theta \] \[ y = k + r \sin \theta \] Substituting \(h = -\frac{m}{2}\), \(k = -\frac{m}{2}\), and \(r = \frac{m}{\sqrt{2}}\): \[ x = -\frac{m}{2} + \frac{m}{\sqrt{2}} \cos \theta \] \[ y = -\frac{m}{2} + \frac{m}{\sqrt{2}} \sin \theta \] ### Final Parametric Equations Thus, the parametric equations of the circle are: \[ x = -\frac{m}{2} + \frac{m}{\sqrt{2}} \cos \theta \] \[ y = -\frac{m}{2} + \frac{m}{\sqrt{2}} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -2)|7 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -3)|10 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The parametric equation of the circle x^(2)+y^(2)=r^(2) are

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Write the parametric equations of the circle x^(2)+y^(2)-2x-4y-4=0

Find the parametric equation of the circles : x^2 +y^2 =9

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equation of the circles : (i) 2x^(2) + 2y^(2) - 5x - 7y - 3 = 0 (ii) 3x^(2) + 3y^(2) + 4x - 6y - 4 = 0 .

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0