Home
Class 12
MATHS
If the eccentricity of the hyperbola x^(...

If the eccentricity of the hyperbola `x^(2) - y^(2) sec^(2)theta = 4` is `sqrt3` time the eccentricity of the ellipse `x^(2)sec^(2)theta+y^(2) = 16`, then the volue of `theta` equal

A

`pi/6`

B

`(3pi)/4`

C

`pi/3`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \theta \) given the relationship between the eccentricities of a hyperbola and an ellipse. We start by determining the eccentricities of both curves. ### Step 1: Identify the hyperbola and its eccentricity The equation of the hyperbola is given as: \[ x^2 - y^2 \sec^2 \theta = 4 \] We can rewrite this in standard form: \[ \frac{x^2}{4} - \frac{y^2}{4 \sec^2 \theta} = 1 \] From this, we identify: - \( a^2 = 4 \) → \( a = 2 \) - \( b^2 = 4 \sec^2 \theta \) → \( b = 2 \sec \theta \) The eccentricity \( e_h \) of the hyperbola is given by: \[ e_h = \frac{c}{a} \quad \text{where } c = \sqrt{a^2 + b^2} \] Calculating \( c \): \[ c = \sqrt{4 + 4 \sec^2 \theta} = \sqrt{4(1 + \sec^2 \theta)} = 2\sqrt{1 + \sec^2 \theta} \] Thus, the eccentricity becomes: \[ e_h = \frac{2\sqrt{1 + \sec^2 \theta}}{2} = \sqrt{1 + \sec^2 \theta} \] ### Step 2: Identify the ellipse and its eccentricity The equation of the ellipse is given as: \[ x^2 \sec^2 \theta + y^2 = 16 \] Rewriting this in standard form: \[ \frac{x^2}{16 \sec^2 \theta} + \frac{y^2}{16} = 1 \] From this, we identify: - \( a^2 = 16 \) → \( a = 4 \) - \( b^2 = 16 \sec^2 \theta \) → \( b = 4 \sec \theta \) The eccentricity \( e_e \) of the ellipse is given by: \[ e_e = \frac{c}{a} \quad \text{where } c = \sqrt{a^2 - b^2} \] Calculating \( c \): \[ c = \sqrt{16 - 16 \sec^2 \theta} = \sqrt{16(1 - \sec^2 \theta)} = 4\sqrt{1 - \sec^2 \theta} \] Thus, the eccentricity becomes: \[ e_e = \frac{4\sqrt{1 - \sec^2 \theta}}{4} = \sqrt{1 - \sec^2 \theta} \] ### Step 3: Set up the relationship between eccentricities According to the problem, the eccentricity of the hyperbola is \( \sqrt{3} \) times the eccentricity of the ellipse: \[ e_h = \sqrt{3} e_e \] Substituting the expressions for \( e_h \) and \( e_e \): \[ \sqrt{1 + \sec^2 \theta} = \sqrt{3} \sqrt{1 - \sec^2 \theta} \] ### Step 4: Square both sides Squaring both sides gives: \[ 1 + \sec^2 \theta = 3(1 - \sec^2 \theta) \] Expanding and rearranging: \[ 1 + \sec^2 \theta = 3 - 3\sec^2 \theta \] \[ 4\sec^2 \theta = 2 \] \[ \sec^2 \theta = \frac{1}{2} \] ### Step 5: Find \( \theta \) Taking the reciprocal gives: \[ \cos^2 \theta = 2 \quad \Rightarrow \quad \cos \theta = \pm \frac{1}{\sqrt{2}} \] Thus, \( \theta \) can be: \[ \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \] ### Step 6: Identify valid angles From the options provided, we check which angle corresponds to \( \cos \theta = \pm \frac{1}{\sqrt{2}} \): - \( \theta = \frac{3\pi}{4} \) is a valid solution. Thus, the value of \( \theta \) is: \[ \theta = \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise 8)|6 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise : -1 Concept Builder (Topicwise -6)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)theta=4 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2)=16 , then the value of theta equals

For some theta in(0,(pi)/(2)) ,if the eccentric of the hyperbola x^(2)-y^(2)sec^(2)theta=10 is sqrt(5) times the eccentricity of the ellipse, x^(2)sec^(2)theta+y^(2)=5 ,then the length of the latus rectum of the ellipse

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)alpha+y^(2)=25 , then tan^(2)alpha is equal to

Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2)-y^(2) cosec^(2) theta=5 is sqrt(7) times the eccentricity of the ellipse x^(2) cosec^(2) theta+y^(2)=5 then theta is equal to ________

If the eccentricity of the hyperbola x^(2)-y^(2)(sec)alpha=5 is sqrt(3) xx the eccentricity of the ellipse x^(2)(sec)^(2)alpha+y^(2)=25, then a value of alpha is : (a) (pi)/(6) (b) (pi)/(4) (c) (pi)/(3) (d) (pi)/(2)

The eccentricity of the hyperbola (sqrt(2006))/(4) (x^(2) - y^(2))= 1 is

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt(3) xx the eccentricity the ellipse x^(2)sec^(2)alpha+y^(2)=25 then alpha=(pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

The eccentricity of hyperbola x^2-y^2cosec^theta=5 is sqrt7 times of eccentricity of ellipse x^2+y^2cosec^theta =5 then theta is where 0lt0ltpi/2

The eccentricity of the hyperbola 16x^(2)-9y^(2)=1 is The eccentricity of the hyperbola 16x^(2)-9y^(2)=1 is