Home
Class 12
MATHS
If f(x)= 2 sinx -3x^(4)+8, then find f'(...

If f(x)=` 2 sinx -3x^(4)+8`, then find f'(x) is

A

`2 sin x-12 x^(3)`

B

`2 cos x-12 x^(3)`

C

`2 cos x+12 x^(3)`

D

`2 sin x+12x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = 2 \sin x - 3x^4 + 8 \), we will apply the rules of differentiation step by step. ### Step 1: Identify the components of the function The function consists of three terms: 1. \( 2 \sin x \) 2. \( -3x^4 \) 3. \( 8 \) ### Step 2: Differentiate each term We will differentiate each term separately using the following rules: - The derivative of \( \sin x \) is \( \cos x \). - The derivative of \( x^n \) is \( n x^{n-1} \). - The derivative of a constant is \( 0 \). #### Differentiating the first term: \[ \frac{d}{dx}(2 \sin x) = 2 \cos x \] #### Differentiating the second term: \[ \frac{d}{dx}(-3x^4) = -3 \cdot 4x^{4-1} = -12x^3 \] #### Differentiating the third term: \[ \frac{d}{dx}(8) = 0 \] ### Step 3: Combine the derivatives Now we combine the derivatives of the three terms: \[ f'(x) = 2 \cos x - 12x^3 + 0 \] Thus, the final result is: \[ f'(x) = 2 \cos x - 12x^3 \] ### Final Answer: \[ f'(x) = 2 \cos x - 12x^3 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If f(2x+3)=sinx+2^(x) , then f(4m-2n+3) is equal to

(i) If f(x) = 3x^(4)- 5x^(2) + 7, " find " f(x-1) (ii) If f(x) = x^(2) - 3x + 4 , then find the values of x satisfying f(x) = f(2x+1)

If f(x) = x^3 , then find f^(-1 )( 8 )

If f(x)=sinx then find dy/dx if y=cosxf(x^2)

If u=f(x^2), v=g(x^3) , f'(x)=sinx and g'(x)= cos x then find (du) / (dv) .

If is a real valued function defined by f(x)=x^(2)+4x+3, then find f'(1) and f'(3)

A=(1,2,3,4) and f(x)=2x^(2),x inA If f(x)=18, then find x.

If f(x^(2) - 4x + 4) = x^(2) + 1 . Find f(1) if f(1) lt 8 .

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in