Home
Class 12
MATHS
If y=x tan ""x/2, then value of (1+cos x...

If `y=x tan ""x/2`, then value of `(1+cos x) (dy)/(dx)-sin x` is

A

`-x`

B

`x^(2)`

C

x

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((1 + \cos x) \frac{dy}{dx} - \sin x\) where \(y = x \tan\left(\frac{x}{2}\right)\). ### Step 1: Find \(\frac{dy}{dx}\) Given: \[ y = x \tan\left(\frac{x}{2}\right) \] We will use the product rule and chain rule to differentiate \(y\). Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(x) \cdot \tan\left(\frac{x}{2}\right) + x \cdot \frac{d}{dx}\left(\tan\left(\frac{x}{2}\right)\right) \] The derivative of \(x\) is \(1\), and now we need to find \(\frac{d}{dx}\left(\tan\left(\frac{x}{2}\right)\right)\) using the chain rule: \[ \frac{d}{dx}\left(\tan\left(\frac{x}{2}\right)\right) = \sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2} \] So, we have: \[ \frac{dy}{dx} = \tan\left(\frac{x}{2}\right) + x \cdot \left(\sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2}\right) \] \[ = \tan\left(\frac{x}{2}\right) + \frac{x}{2} \sec^2\left(\frac{x}{2}\right) \] ### Step 2: Substitute \(\frac{dy}{dx}\) into the expression Now we substitute \(\frac{dy}{dx}\) into the expression \((1 + \cos x) \frac{dy}{dx} - \sin x\): \[ (1 + \cos x) \left(\tan\left(\frac{x}{2}\right) + \frac{x}{2} \sec^2\left(\frac{x}{2}\right)\right) - \sin x \] ### Step 3: Simplify the expression Distributing \((1 + \cos x)\): \[ (1 + \cos x) \tan\left(\frac{x}{2}\right) + (1 + \cos x) \frac{x}{2} \sec^2\left(\frac{x}{2}\right) - \sin x \] ### Step 4: Use the identity for \(1 + \cos x\) Recall the identity: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] So we can rewrite: \[ 2 \cos^2\left(\frac{x}{2}\right) \tan\left(\frac{x}{2}\right) + 2 \cos^2\left(\frac{x}{2}\right) \frac{x}{2} \sec^2\left(\frac{x}{2}\right) - \sin x \] ### Step 5: Simplify further Using \(\tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}\) and \(\sec^2\left(\frac{x}{2}\right) = \frac{1}{\cos^2\left(\frac{x}{2}\right)}\): \[ = 2 \cos^2\left(\frac{x}{2}\right) \cdot \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} + 2 \cos^2\left(\frac{x}{2}\right) \cdot \frac{x}{2} \cdot \frac{1}{\cos^2\left(\frac{x}{2}\right)} - \sin x \] This simplifies to: \[ 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) + x - \sin x \] Using the double angle identity: \[ = \sin x + x - \sin x = x \] ### Final Answer Thus, the value of \((1 + \cos x) \frac{dy}{dx} - \sin x\) is: \[ \boxed{x} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

sin2x(dy)/(dx)-y=tan x

tan y (dy)/(dx) = sin x + cos x

If y=log sin x+tan x, then Find the value of (dy)/(dx)

If y=tan^(-1)(cos x) ,then the value of " (dy)/(dx) =

y=[(1-tan x)/(1+tan x)], then the value of (dy)/(dx)

If y=tan^(-1)((cos x+1)/sinx) ,then the value of " (dy)/(dx) =

If y=sin x+cos x then (dy)/(dx) =

If y=tan^(-1)sqrt((1-sin x)/(1+sin x)), then the value of (dy)/(dx) at x=(pi)/(6) is.

y=log tan((x)/(2))+sin^(-1)(cos x), then (dy)/(dx) is