Home
Class 12
MATHS
Let f(x)=alpha (x) beta (x) gamma (x) fo...

Let `f(x)=alpha (x) beta (x) gamma (x)` for all real x, where `alpha (x), beta (X) and gamma (x)` are differentiable functions of x. If f'(2)=18 f(2), `alpha'(2)=3 alpha (2), beta' (2)=-4 beta (2) and gamma'(2)=k gamma (2)`, then the value of k is

A

14

B

16

C

19

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the function \( f(x) = \alpha(x) \beta(x) \gamma(x) \) and the derivatives at \( x = 2 \). ### Step-by-Step Solution: 1. **Identify the given information:** - \( f'(2) = 18 f(2) \) - \( \alpha'(2) = 3 \alpha(2) \) - \( \beta'(2) = -4 \beta(2) \) - \( \gamma'(2) = k \gamma(2) \) 2. **Express \( f(2) \):** \[ f(2) = \alpha(2) \beta(2) \gamma(2) \] 3. **Differentiate \( f(x) \):** Using the product rule, we have: \[ f'(x) = \alpha'(x) \beta(x) \gamma(x) + \alpha(x) \beta'(x) \gamma(x) + \alpha(x) \beta(x) \gamma'(x) \] 4. **Substituting \( x = 2 \):** \[ f'(2) = \alpha'(2) \beta(2) \gamma(2) + \alpha(2) \beta'(2) \gamma(2) + \alpha(2) \beta(2) \gamma'(2) \] 5. **Plug in the values at \( x = 2 \):** \[ f'(2) = (3 \alpha(2)) \beta(2) \gamma(2) + \alpha(2) (-4 \beta(2)) \gamma(2) + \alpha(2) \beta(2) (k \gamma(2)) \] Simplifying this gives: \[ f'(2) = 3 \alpha(2) \beta(2) \gamma(2) - 4 \alpha(2) \beta(2) \gamma(2) + k \alpha(2) \beta(2) \gamma(2) \] \[ f'(2) = (3 - 4 + k) \alpha(2) \beta(2) \gamma(2) \] \[ f'(2) = (k - 1) f(2) \] 6. **Set the equation from the given information:** From the problem, we know that: \[ f'(2) = 18 f(2) \] Therefore, we equate: \[ (k - 1) f(2) = 18 f(2) \] 7. **Divide both sides by \( f(2) \) (assuming \( f(2) \neq 0 \)):** \[ k - 1 = 18 \] 8. **Solve for \( k \):** \[ k = 19 \] ### Final Answer: The value of \( k \) is \( 19 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • LIMITS AND DERIVATIVES

    DISHA PUBLICATION|Exercise Exercise- 1 : Concept Builder (Topic 3)|15 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos
  • LINEAR INEQUALITIES

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha,beta,gamma are the roots of x^(3)+2x+1=0 then the equation whose roots are beta^(2)gamma^(2),gamma^(2)alpha^(2),alpha^(2)beta^(2) is

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

|[x-3, x-4, x-alpha], [x-2, x-3, x-beta], [x-1, x-2, x-gamma]| =0,"where" alpha, beta, gamma "are in AP"