Home
Class 11
MATHS
lim(thetato0)(sinsqrttheta)/sqrt(sinthet...

`lim_(thetato0)(sinsqrttheta)/sqrt(sintheta)......`

A

1

B

-1

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    FULL MARKS|Exercise EXERCISE 9.5|34 Videos
  • DIFFERENTIAL CALCULUS - DIFFERENTIABILITY AND METHODS OF DIFFERENTIATION

    FULL MARKS|Exercise EXERCISE 5 ADDITIONAL PROBLEMS (Find the derivative of following functions.)|10 Videos
  • EXAMINATION QUESTION PAPER - JUNE 2019

    FULL MARKS|Exercise PART -IV|7 Videos

Similar Questions

Explore conceptually related problems

lim_(thetato0)(sinsqrttheta)/(sqrtsintheta)

lim_(thetato0) (sinsqrttheta)/(sqrtsintheta)=....................... .

Choose the correct or the most suitable answer from the given four alternatives. lim_(thetararr0)[sinsqrt(theta)]/[sqrt(sintheta)]

lim_(thetararr0)[sinsqrt(2theta)]/[sqrt(sin2theta)] is :

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) ,then the possible value of tan theta , is -

Prove that following identities sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta))=2sectheta

Choose the correct option for the following lim_(thetararr0)sqrt[(1-cos9theta)/(1-cos16theta)] is :

lim_(xto0)(sqrt(1+sinx)-sqrt(1-sinx))/tanx

Using ("lim")_(thetato0)(sintheta)/theta=1 prove that the area of circle of radius R is piR^2 (Figure)