Home
Class 11
MATHS
int(e^(6 log x) - e^(5 log x))/(e^(4 log...

`int(e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x)) dx`……………. .

A

`x + c`

B

`(x^3)/3 + c`

C

`3/(x^3) + c`

D

`1/(x^2) + c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    FULL MARKS|Exercise EXERCISE 11.12|2 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    FULL MARKS|Exercise MATHEMATICS|49 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    FULL MARKS|Exercise ADDITIONAL PROBLEM|17 Videos

Similar Questions

Explore conceptually related problems

e ^(x log a)e^(x)

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

I=int \ log_e (log_ex)/(x(log_e x))dx

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

(d)/(dx) (e^(x + 5 log x)) is …........... .

Evaluate: int_(-log2)^(log2) e^(-|x|) dx.

If g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1| , then graphs of g(x) is symmetrical about the origin graph of g(x) is symmetrical about the y-axis ((d^4g(x))/(dx^4)|)_(x=0)=0 f(x)=g(x)xxlog((a-x)/(a+x)) is an odd function