Home
Class 11
MATHS
int x^(2) e ^((x)/(2)) dx is...

`int x^(2) e ^((x)/(2)) dx ` is

A

`x^2e^(x/2) - 4xe^(x/2) - 8e^(x/2) + c`

B

`2x^2 e^(x/2) - 8xe^(x/2) - 16e^(x/2) + c`

C

`2x^2 e^(x/2) - 8xe^(x/2) + 16e^(x/2) + c`

D

`x^2 (e^(x/2))/(2) - (xe^(x/2))/(4) + (e^(x/2))/(8) + c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    FULL MARKS|Exercise EXERCISE 11.12|2 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    FULL MARKS|Exercise MATHEMATICS|49 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    FULL MARKS|Exercise ADDITIONAL PROBLEM|17 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(prop) x^(6) e^(-(x)/(2))dx is :

Find int3x^(2)e^(x^(3))dx

The value of int_(0)^(oo) e^(-3x) x^(2) dx is

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int (e^(x))/(( 1 + e^(x))^(2)) dx = _______ + c

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

int(x)/(e^(x^(2)))dx

Evaluate: int (e^x - 1)^(2) e^(-4x) dx .