Home
Class 12
MATHS
The value of int(-4)^(4) [ tan^(-1)((x^...

The value of `int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx ` is

A

`pi`

B

`2pi`

C

`3pi`

D

`4pi`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 03

    FULL MARKS|Exercise PART II|10 Videos
  • SAMPLE PAPER 03

    FULL MARKS|Exercise PART III|10 Videos
  • SAMPLE PAPER -15 ( UNSOLVED)

    FULL MARKS|Exercise PART -IV|7 Videos
  • SAMPLE PAPER- 10 (UNSOLVED)

    FULL MARKS|Exercise (PART-IV) IV. Answer all the questions.|7 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

int 5^(x+tan^(-1)x)*((x^(2)+2)/(x^(2)+1))dx .

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx :

Evaluate int(4x^(3)sin(tan^(-1)(x^(4))))/(1+x^(8))dx

Solve : tan^(-1) ((x-2)/(x-3)) + tan^(-1) ((x+2)/(x+3)) = pi/4