If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is
If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z x y+y z+z x=x+y+z-1 (x+1/x)+(y+1/y)+(z+1/z)geq6
Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)
y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))
Integrate the functions (sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)
The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3
If alpha=sin^(-1)(cos(sin^(-1)x))a n dbeta=cos^(-1)("sin"(cos^(-1)x)), then find tanalphadottanbeta
The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is (a)0 (b) -1 (c) 1 (d) 2