Home
Class 12
MATHS
If the planes vec(r)*(2hat(i)-lamdahat(j...

If the planes `vec(r)*(2hat(i)-lamdahat(j)+hat(k))=3andvec(r)(4hat(i)+hat(j)-muhat(k))=5` are parallel, then the value of `lambdaandmu` are

A

`(1)/(2), -2`

B

`-(1)/(2), 2`

C

`-(1)/(2), -2`

D

`(1)/(2), 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -IV|14 Videos
  • SAMPLE PAPER -07 ( UNSOLVED)

    FULL MARKS|Exercise PART -IV|7 Videos

Similar Questions

Explore conceptually related problems

For the plane vec(r).(2hat(i)+3hat(j)+5hat(k))=3

If the planes vec(r).(hat(i)+2hat(j)+3hat(k))=7andvec(r).(lambdahat(i)+2hat(j)-7hat(k))=26 are perpendicular. Find the value of lambda.

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

Show that the lines vec(r)=(6hat(i)+hat(j)+2hat(k))+s(hat(i)+2hat(j)-3hat(k)),andvec(r)=(3hat(i)+2hat(j)-2hat(k))+t(2hat(i)+4hat(j)-5hat(k)) are skew lines and hence find the shortest distance between them.

Find the altitude of a parallelepiped determined by the vectors vec(a)=-2hat(i)+5hat(j)+3hat(k)" "vec(b)=hat(i)+3hat(j)-2hat(k)andvec(c)=-3hat(i)+hat(j)+4hat(k) if the base is taken as the parallelogram determined by vec(b)andvec(c).

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

Find the angle between the line vec(r)=(2hat(i)-hat(j)+hat(k))+t(6hat(i)+2hat(j)-2hat(k))" and the plane "vec(r)*(6hat(i)+3hat(j)+2hat(k))=8