Home
Class 12
MATHS
If cot^(-1)x=(2pi)/5 for some x in R , t...

If `cot^(-1)x=(2pi)/5` for some `x in R` , the value of `tan^(-1)` x is ........

A

`-pi/10`

B

`pi/5`

C

`pi/10`

D

`-pi/5`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -II|10 Videos
  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -III|10 Videos
  • SAMPLE PAPER - 5

    FULL MARKS|Exercise PART -IV|13 Videos
  • SAMPLE PAPER -04

    FULL MARKS|Exercise PART -I|1 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1) x = (2pi)/7 for some x in R the value of tan^(-1) x is :

If cot^(-1)x=(2pi)/(5)"for some"x""inR,"the value of"tan^(-1)x is

tan^(-1)x +cot^(-1) x= .......

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____

If cos^(-1)(6x)/(1+9x^2)=-pi/2+tan^(-1)3x , then find the value of xdot

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

Draw the graph of y=tan^(-1)x-cot^(-1)x .

If cos^(-1)x + cot^(-1) (1/2) = pi/2 then x is equal to